

Data sheet acquired from Harris Semiconductor SCHS070B – Revised June 2003

CMOS Dual 4-Bit Latch

High-Voltage Types (20-Volt Rating)

CD4508B dual 4-bit latch contains two identical 4-bit latches with separate STROBE, RESET, and OUTPUT DISABLE controls. With the STROBE line in the high state, the data on the "D" inputs appear at the corresponding "Q" outputs provided the DISABLE line is in the low state. Changing the STROBE line to the low state locks the data into the latch. A high on the reset line forces the outputs to a low level regardless of the state of the STROBE input. The outputs are forced to the high-impedance state for bus line applications by a high level on the DISABLE input.

The CD4508B types are supplied in 24-lead hermetic dual-in-line ceramic packages (F3A suffix), 24-lead dual-in-line plastic packages (E suffix), 24-lead small-outline packages (M, M96, and NSR suffixes), and 24-lead thin shrink small-outline packages (PW and PWR suffixes).

The CD4508B is similar to industry type MC14508.

Features:

- Two independent 4-bit latches
- Individual master reset for each 4-bit latch
- 3-state outputs with high-impedance state for bus line applications
- Medium-speed operation: tpHL = tpLH = 70 ns (typ.) at VDD = 10 V and CL = 50 pF
- 100% tested for quiescent current at 20 V
- 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) =

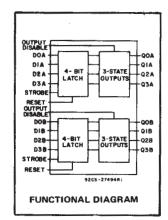
1 V at VDD = 5 V

2 V at V_{DD} = 10 V

2.5 V at VDD = 15 V

 Meets all requirements of JEDEC Tentative Standard No. 13B,"Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:


- Buffer storage
- Holding registers
- Data storage and multiplexing

MAXIMUM RATINGS, Absolute-Maximum Values: DC SUPPLY-VOLTAGE RANGE. (VDD)

DO 3011 E. 10E1/14E 15114E, (1DD)	
Voltages referenced to VSS Terminal)0.5V to +20V	
INPUT VOLTAGE RANGE, ALL INPUTS0.5V to V _{DD} +0.5V	
DC INPUT CURRENT, ANY ONE INPUT	
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	
For T _A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW	
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	
OPERATING-TEMPERATURE RANGE (T _A)55°C to +125°C	
STORAGE TEMPERATURE RANGE (T _{stq})65°C to +150°C	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max	

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}$ C, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

	V _{DD}	LIM		
CHARACTERISTIC	(V)	Min.	Max.	UNITS
Supply-Voltage Range (For T _A = Full Package- Temperature Range)		3	18	٧
	5	200	_	
Reset Pulse Width, tW(R)	10	140	_	1
	15	100	_	j
	5	140	_	1
Strobe Pulse Width, tW(st)	10	80	-	
	15	70]
	5	50	_	ns
Setup Time, t _{SU}	10	30	-	
	15	20	_	
	5	0] .
Hold Time, tH	10	0	_	
	15	0	_	

CD4508B Types

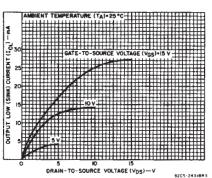


Fig.2 – Typical output low (sink) current characteristics.

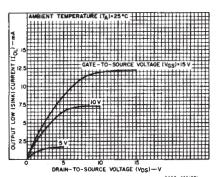


Fig.3 – Minimum output low (sink) current characteristics.

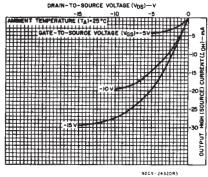


Fig.4 — Typical output high (source) current characteristics.

Copyright © 2003, Texas Instruments Incorporated

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CONE	HOITICA	IS	LIMIT	S AT II	NDICAT	ED TEN	MPERATURES (°C)			UNITS	
12116	Vo	VIN	V _{DD} (V)	-55	-40	+85	+125	Min.	+25 Typ.	Max.	}	
	(V)	(V)	5	5	5	150	150	171111.	-	-	-	
Quiescent Device Current,	-	0,5	10	10	10	300	300	-	0.04	5 10		
IDD Max.		0,10	15	20	20	600	600	_	0.04	20	μА	
	-	0,15	20	100	100	3000	3000	_	0.04	100		
	_									100		
Output Low (Sink) Current	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1		ľ	
IOL Min.	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6			
	1.5	0,15	15	4.2	4	2.8	2.4	34	6.8		mA	
Output High	4,6	0,5	5	-0.64		-0.42	-0.36	-0.51	-1	-	ma	
(Source) Current, IOH Min.	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	-		
	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	.'		
	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8			
Output Voltage: Low-Level,	-	0,5	5			.05		-	0	0,05		
VOL Max.	_	0,10	10			.05		-	0	0.05		
	-	0,15	15	0.05				_	0	0.05	v -	
Output Voltage:		0,5	5	4.95				4.95	5	_]	
High-Level, -VOH Min.		0,10	10		9	.95		9.95	10			
AOH MIII.	_	0,15	15		14	.95		14.95	15	±(** .		
Input Low	0.5, 4.5	_	5		1	.5		_	_	1.5	***	
Voltage,	1, 9		10			3			- 122	3	6 × 40	
VIL Max.	1.5,13.5	-	15			4	·	_		4	.,	
Input High	0.5, 4.5	_	5	3.5 3.5 —		_	V					
Voltage,	1, 9	_	10			7		7		_		
VIH Min.	1.5,13.5	- -	15		•	1	,	11	_	_		
Input Current IJN Max.	-	0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ	
3-State Output Leakage Gurrent IOUT Max.	0,18	0,18	18	±0.4	±0.4	±12	±12	7	±10-4	±0.4	μΑ	

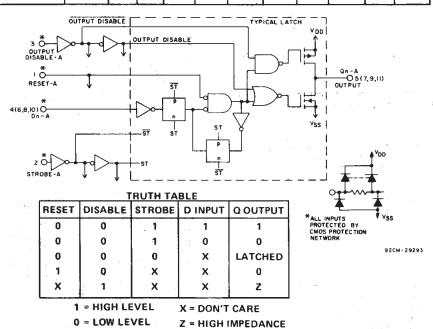


Fig. 7 — Logic diagram (A-Section), 1 of 4 identical latches with common output disable, reset, and strobe.

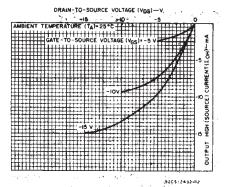


Fig. 4 — Minimum output high (source) current characteristics.

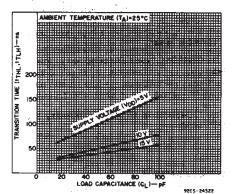


Fig. 5 — Typical transition time as a function of load capacitance.

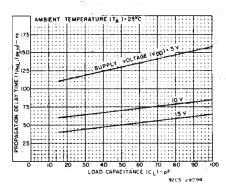


Fig. 6 — Typical propagation delay time as a function of load capacitance (strobe to data out).

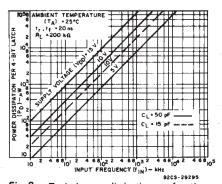
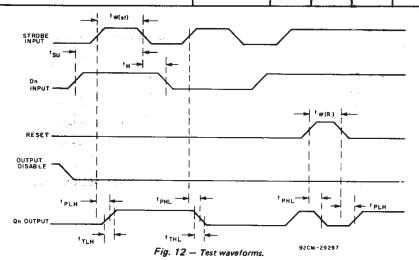



Fig. 8 — Typical power dissipation as a function of frequency.

CD4508B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C; Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω , unless otherwise specified.

CHARACTERISTIC	TEST		LIA		
CHARACTERISTIC	CONDITIONS	VDD	Тур.	Max.	UNITS
		5	100	200	
Transition Time, tthe, ttel	İ	10	50	100	
		15	40	80	
		5	100	200	1
Minimum Reset Pulse Width, tW(R)	İ	10	70	140	<u> </u>
		15	50	100	
		5	70	140	ĺ
Minimum Strobe Pulse Width, tW(st)		10	40	80	
	İ	15	35	70	
		5	25	50	
Minimum Setup Time, t _{SU}		10	15	30	
		15	10	20	
		5	0	0	
Minimum Hold Time, tH		10	0	0	
		15	0	0	
Propagation Delay Times: tpHL,tpLH		5	130	260	
Strobe to Data Out		10	70	140	
· ·	ļ	15	50	100	ns
		5	105	210	
Data In to Data Out		10	60	120	7
		15	45	90	
	İ	5	90	180	
Reset to Data Out	1	10	50	100	
		15	40	80	
20th Brown St. D. L. T.		5	90	180	
3-State Propagation Delay Times:		10	50	100	
Output High to High Impedance,tpHZ		15	35	70	
		5	90	180	
High Impedance to Output High, tpZH		10	50	100	1
		15	35	70	
	111	5	90	180	
Output Low to High Impedance, tpLZ		10	50	100	
		15	35	70	
		5	90	180	
High Impedance to Output Low, tpZL		10	50	100	
was,		15	35	70	
Input Capacitance, CIN	Any Input	-	5	7.5	pF
			1 1	i	1

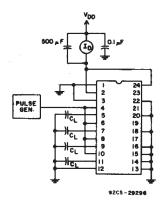


Fig.9 - Power dissipation test circuit.

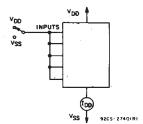


Fig. 10 — Quiescent device current test circuit.

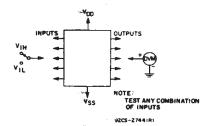


Fig. 11 - Input voltage test circuit.

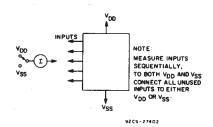


Fig. 13 - Input current test circuit.

CD4508B Types

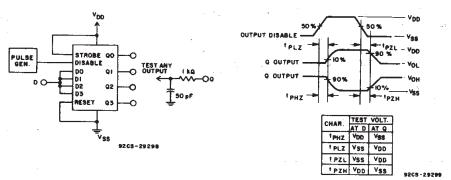
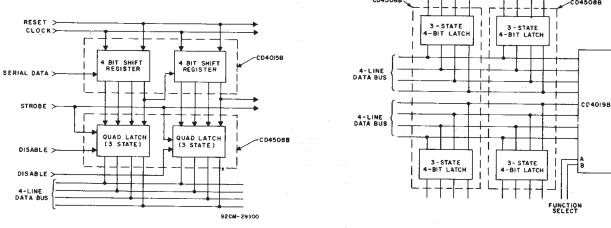
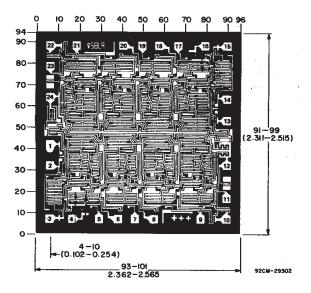
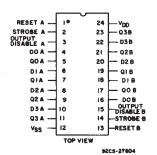


Fig. 14 - Output disable test circuit and waveforms.


Fig. 15 - Bus register.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

Chip dimensions and pad layout for CD4508B.

Fig.16 — Dual multiplexed bus register with function select.

92CM - 29301

DATA BUS

TERMINAL ASSIGNMENT

i.com 28-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
CD4508BD3	ACTIVE	CDIP SB	JD	24	1	None	Call TI	Level-NC-NC-NC
CD4508BE	ACTIVE	PDIP	N	24	15	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
CD4508BF3A	ACTIVE	CDIP	J	24	1	None	Call TI	Level-NC-NC-NC
CD4508BM	ACTIVE	SOIC	DW	24	25	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CD4508BM96	ACTIVE	SOIC	DW	24	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR/ Level-1-235C-UNLIM
CD4508BNSR	ACTIVE	SO	NS	24	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR/ Level-1-235C-UNLIM
CD4508BPW	ACTIVE	TSSOP	PW	24	60	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
CD4508BPWR	ACTIVE	TSSOP	PW	24	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

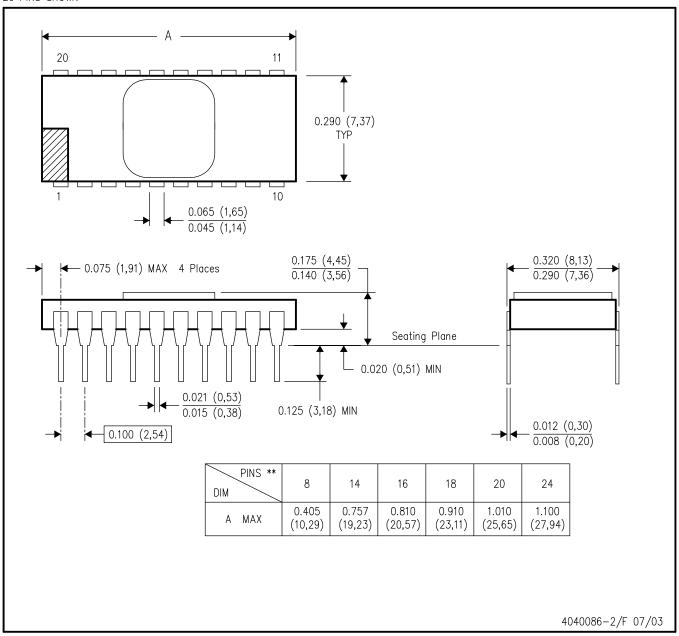
(2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

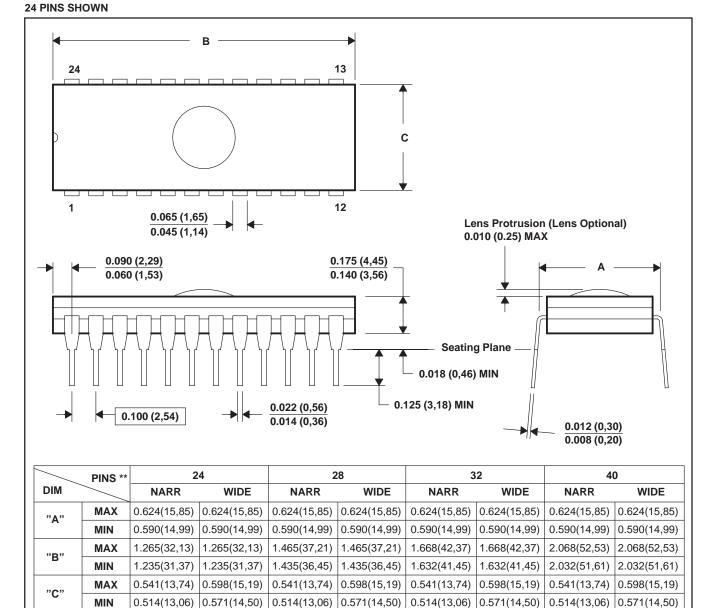
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

JD (R-CDIP-T**)

CERAMIC SIDE-BRAZE DUAL-IN-LINE PACKAGE

20 PINS SHOWN

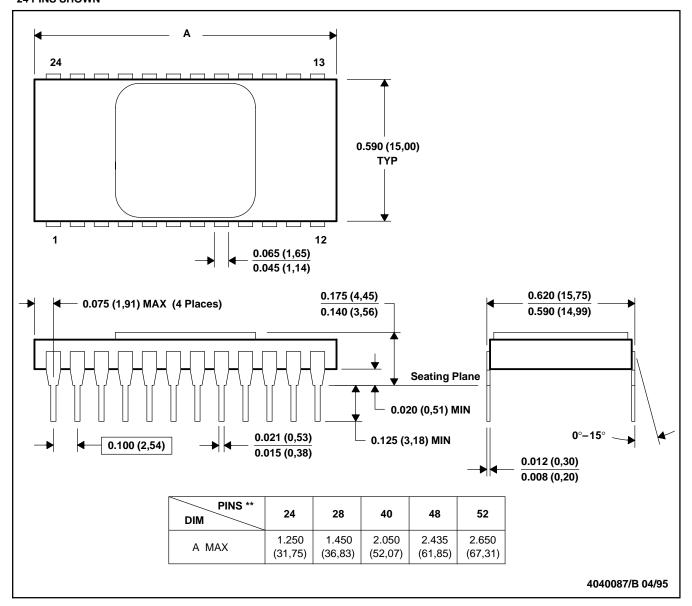
NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within MIL STD 1835 CDIP2 T8, T14, T16, T18, T20 and T24 respectively.

4040084/C 10/97

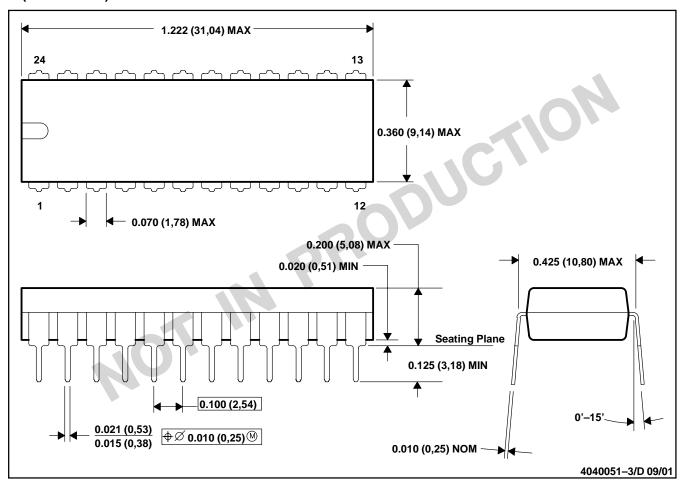
J (R-GDIP-T**)

CERAMIC DUAL-IN-LINE PACKAGE


- B. This drawing is subject to change without notice.
- C. Window (lens) added to this group of packages (24-, 28-, 32-, 40-pin).
- D. This package can be hermetically sealed with a ceramic lid using glass frit.
- E. Index point is provided on cap for terminal identification.

JD (R-CDIP-T**)

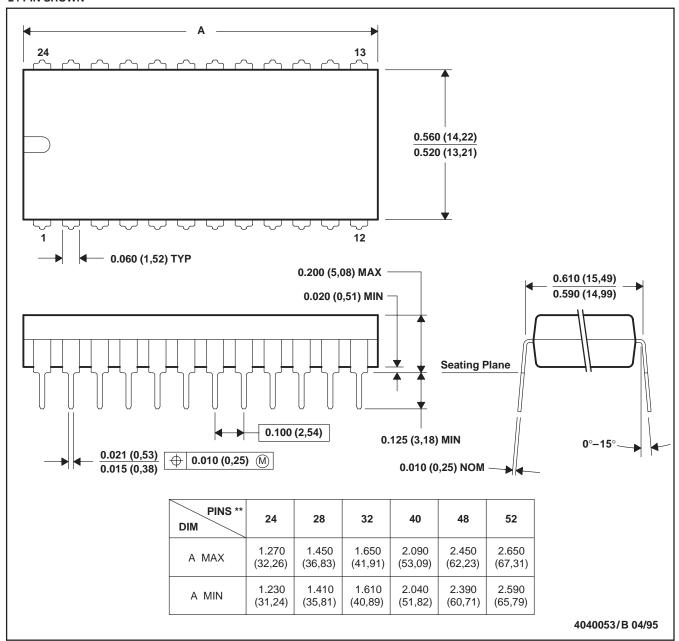
24 PINS SHOWN


CERAMIC SIDE-BRAZE DUAL-IN-LINE PACKAGE

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a metal lid.
- D. The terminals are gold-plated.

N (R-PDIP-T24)

PLASTIC DUAL-IN-LINE

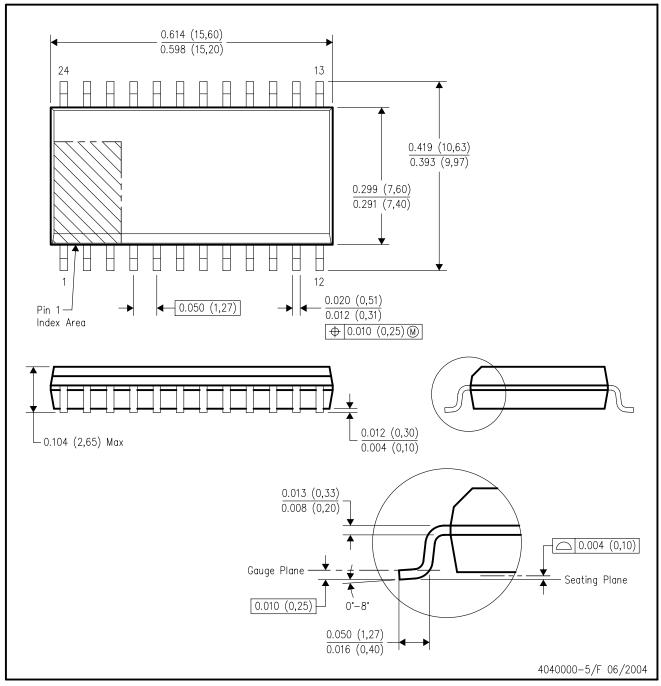


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-010

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

24 PIN SHOWN



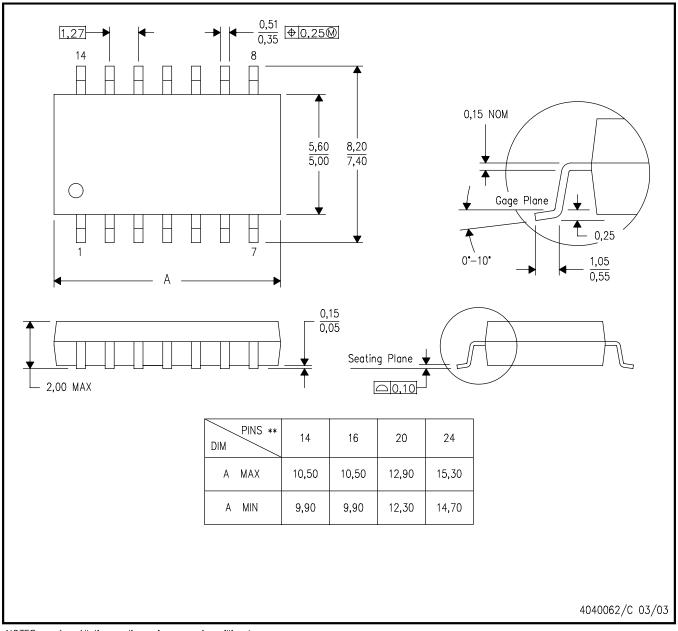
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-011
- D. Falls within JEDEC MS-015 (32 pin only)

DW (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.



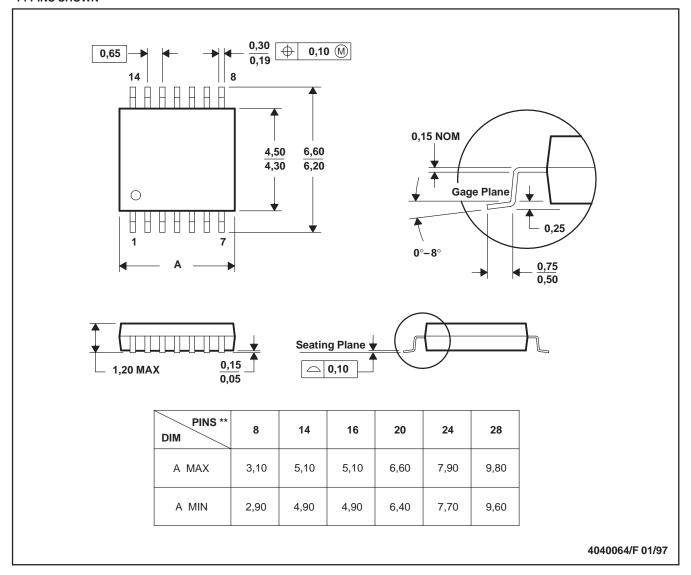
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated