

DM74LS353 Dual 4-Input Multiplexer with TRI-STATE Outputs

©1995 National Semiconductor Corporation TL/F/10185

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Мах	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
VIH	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Current			-2.6	mA
I _{OL}	Low Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max, V_{IL} = Max$	2.7			V
V _{OL}	Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \text{I}_{OL} = \text{Max}, \\ V_{IH} &= \text{Min} \end{split}$			0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = Min$			0.4	
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
I _{OS}	Short Circuit Output Current	V _{CC} = Max (Note 2)	-30		-130	mA
ICCL	Supply Current Outputs HIGH	$V_{CC} = Max,$ In, Sn, $\overline{OE}n = GND$			12	mA
I _{CCZ}	Supply Current Outputs OFF	$V_{CC} = Max, \overline{OE}n = 4.5V$ In, Sn = GND			14	mA
I _{OZH}	TRI-STATE Output OFF Current HIGH	$V_{CC} = V_{CCH}$ $V_{OZH} = 2.7V$	-		20	μΑ
I _{OZL}	TRI-STATE Output OFF Current LOW	$V_{CC} = V_{CCH}$ $V_{OZL} = 0.4V$			-20	μΑ

Note 1: All typicals are at V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

vitching Characteristics $x = +5.0V, T_A = +25^{\circ}C$				
Symbol	Parameter	$R_L = 2 k\Omega$	2, C _L = 50 pF	Units
	Farameter	Min	Max	
t _{PLH} t _{PHL}	Propagation Delay Sn to Zn		24 32	ns
t _{PLH} t _{PHL}	Propagation Delay In to $\overline{Z}n$		15 15	ns
t _{PZH} t _{PZL}	Output Enable Time OE to Zn		18 18	ns
t _{PHZ} t _{PLZ}	Output Disable Time OE to Zn		18 18	ns

Functional Description

The 'LS353 contains two identical 4-input multiplexers with TRI-STATE outputs. They select two bits from four sources selected by common Select inputs (S0, S1). The 4-input multiplexers have individual Output Enable $(\overline{OE}_a), \overline{OE}_b)$ inputs which when HIGH, force the outputs to a high impedance (high Z) state. The logic equations for the outputs are shown below:

If the outputs of TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to TRI-STATE devices whose outputs are tied together are designed so that there is no overlap.

$$\overline{Z}_{a} = \overline{OEa} \bullet (I0a \bullet \overline{S}1 \bullet \overline{S}0 + I1a \bullet \overline{S}1 \bullet S0 + I2a \bullet S1 \bullet \overline{S}0 + I3a \bullet S1 \bullet S0)$$
$$\overline{Z}_{b} = \overline{OE_{b}} \bullet (I0b \bullet \overline{S}1 \bullet \overline{S}0 + I1b \bullet \overline{S}1 \bullet S0 + I2b \bullet S1 \bullet \overline{S}0 + I3b \bullet S1 \bullet S0)$$

Truth Table

Select Inputs		Data Inputs		Output Enable	Output		
S0	S1	10	11	12	13	ŌĒ	Ī
х	Х	х	Х	Х	Х	н	(Z)
L	L	L	Х	Х	Х	L	н
L	L	н	Х	Х	Х	L	L
н	L	x	L	Х	Х	L	н
н	L	x	н	х	х	L	L
L	н	X	Х	L	Х	L	н
L	н	X	Х	Н	Х	L	L
н	Н	X	Х	Х	L	L	н
н	Н	X	Х	Х	н	L	L

Address inputs S0 and S1 are common to both sections.

H = HIGH Voltage Level

 $\begin{array}{l} L = LOW \ \mbox{Voltage Level} \\ L = LOW \ \mbox{Voltage Level} \\ X = Immaterial \\ (Z) = High \ \mbox{Impedance} \end{array}$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications