

Vishay High Power Products

Schottky Rectifier, 3 A

PRODUCT SUMMARY			
I _{F(AV)}	3 A		
V _F at 3 A at 25 °C	0.6 V		
I _{RM}	20 mA at 125 °C		
V _R	40 V		

FEATURES

- Low profile, axial leaded outline
- Very low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Lead (Pb)-free plating
- Designed and qualified for industrial level

DESCRIPTION

The MBR340 axial leaded Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS				
SYMBOL	CHARACTERISTICS	VALUES	UNITS	
I _{F(AV)}	Rectangular waveform	3.0	A	
V _{RRM}		40	V	
I _{FSM}	t _p = 5 μs sine	430	A	
VF	3 Apk, T _J = 25 °C	0.6	V	
TJ		- 40 to 150	°C	

VOLTAGE RATINGS				
PARAMETER	SYMBOL	MBR340	UNITS	
Maximum DC reverse voltage	V _R	40	V	
Maximum working peak reverse voltage	V _{RWM}	40	v	

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current See fig. 4	I _{F(AV)}	50 % duty cycle at T_C = 92 °C, rectangular waveform		3.0	
Maximum peak one cycle non-repetitive surge current	I _{FSM}	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated V _{RRM} applied	430	A
See fig. 6		10 ms sine or 6 ms rect. pulse		80	
Non-repetitive avalanche energy	E _{AS}	$T_J = 25 \text{ °C}, I_{AS} = 1 \text{ A}, L = 12 \text{ mH}$		6.0	mJ
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by, T _J maximum V _A = 1.5 x V _R typical		1.0	А

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum forward voltage drop See fig. 1		1.0 A		0.5	V
		3.0 A	T _J = 25 °C	0.6	
	V _{FM} ⁽¹⁾	9.4 A		0.85	
	VFM (')	1.0 A		0.37	
		3.0 A	T _J = 125 °C	0.49	
		9.4 A		0.72	
Maximum reverse leakage current See fig. 2	I _{RM} ⁽¹⁾	T _J = 25 °C		0.6	mA
		T _J = 100 °C	V _R = Rated V _R	8	
		T _J = 125 °C		20	
Typical junction capacitance	CT	$V_{\rm R}$ = 5 $V_{\rm DC}$ (test signal range 100 kHz to 1 MHz) 25 °C		190	pF
Typical series inductance	Ls	Measured lead to lead 5 mm from package body		9.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R 10 000		V/µs	

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T _J ⁽¹⁾ , T _{Stg}		- 40 to 150	°C
Maximum thermal resistance, junction to lead	R _{thJL} ⁽²⁾	DC operation See fig. 4	28	°C/W
Approvimeto weight			1.2	g
Approximate weight			0.042	oz.
Marking device		Case style C-16	MBF	340

Notes

(1) $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}}$ thermal runaway condition for a diode on its own heatsink

 $^{(2)}\,$ Mounted 1" square PCB, thermal probe connected to lead 2 mm from package

Schottky Rectifier, 3 A Vishay High Power Products

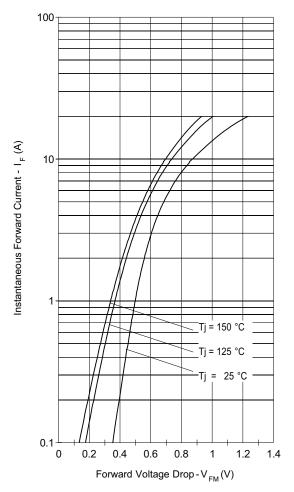
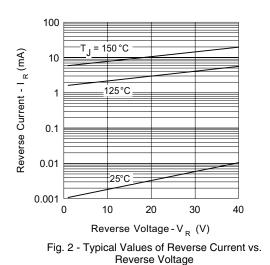
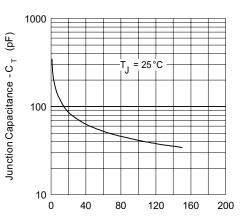




Fig. 1 - Maximum Forward Voltage Drop Characteristics

Reverse Voltage - V $_{\rm R}$ (V)

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

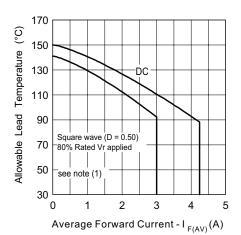
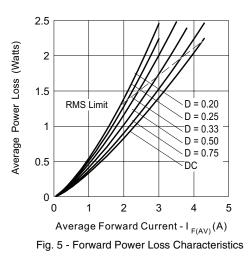



Fig. 4 - Maximum Allowable Lead Temperature vs. Average Forward Current

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

Pd = Forward power loss = $I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6); Pd_{REV} = Inverse power loss = $V_{R1} \times I_R$ (1 - D); I_R at V_{R1} = 80 % rated V_R

Vishay High Power Products Schottk

Schottky Rectifier, 3 A

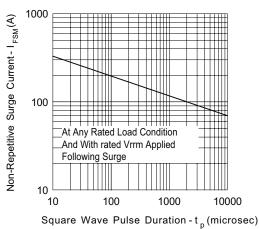
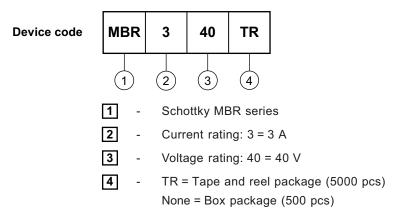



Fig. 6 - Maximum Non-Repetitive Surge Current

ORDERING INFORMATION TABLE

LINKS TO RELATED DOCUMENTS			
Dimensions http://www.vishay.com/doc?95242			
Part marking information	http://www.vishay.com/doc?95304		
Packaging information	http://www.vishay.com/doc?95309		

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.