To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

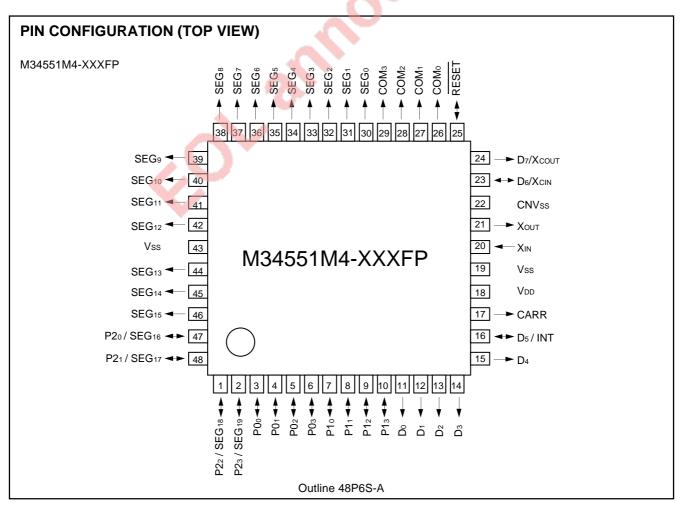
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

DESCRIPTION

The 4551 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with an 8-bit timer with a reload register, a 14-bit timer which is also used as a watchdog timer, a 4-bit timer with a reload register, a carrier wave output circuit and an LCD control circuit.

The mask ROM version and built-in PROM version of 4551 Group are produced as shown in the table below.

FEATURES

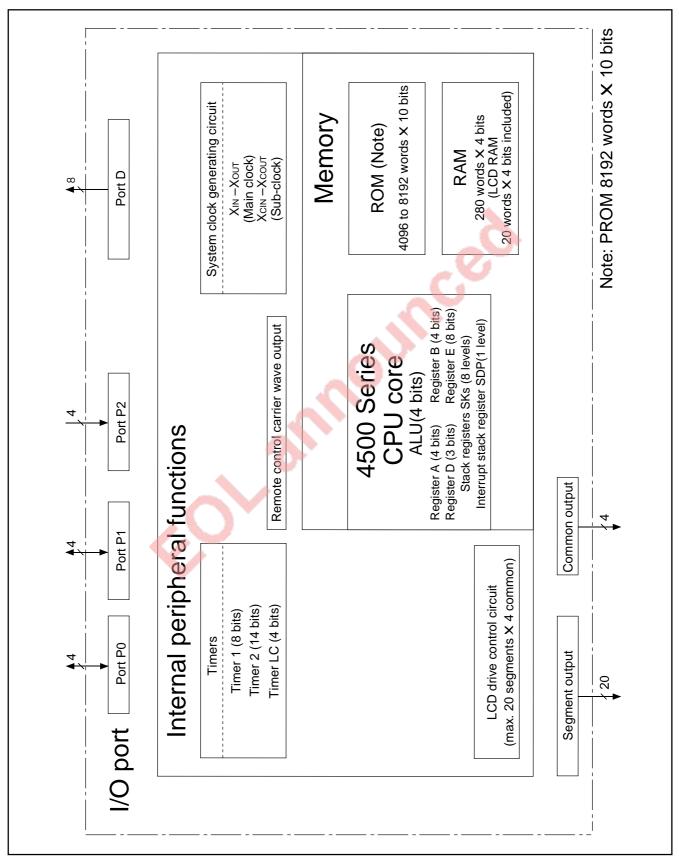

- Supply voltage
- Clock divided by 4 or not divided

APPLICATION

Remote control transmitter

Product	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34551M4-XXXFP	4096 words	280 words	48P6S-A	Mask ROM
M34551E8-XXXFP (Note)	8192 words	280 words	48P6S-A	One Time PROM

Note: Shipped after writing (shipped in blank: M34551E8FP)



MITSUBISHI MICROCOMPUTERS

4551 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

BLOCK DIAGRAM

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

Parameter			Function				
Number of basic instructions		ons	92				
Minimum instru	ction exec	cution time	1.5 μ s (f(XIN) = 8.0 MHz:system clock = f(XIN)/4: VDD = 5.0 V)				
Memory sizes	ROM	M34551M4	4096 words X 10 bits				
		M34551E8	8192 words X 10 bits				
RAM			280 words X 4 bits (LCD RAM 20 words X 4 bits included)				
Input/Output	D0-D7	Output	Eight independent output ports				
ports	P00-P03	I/O	4-bit I/O port; each pin is equipped with a pull-up function.				
	P10-P13	I/O	4-bit I/O port; each pin is equipped with a pull-up function.				
	P20-P23	Input	4-bit input port				
	CARR	Output	1-bit output port (CMOS output)				
Timers	Timer 1		8-bit timer with a reload register				
-	Timer 2/		14-bit timer/				
	Watchdog	g timer	Fixed dividing frequency timer				
-	Timer LC		4-bit timer with a reload register				
Interrupt	Sources		3 (one for external and two for timer)				
-	Nesting		1 level				
Subroutine nes	ting		8 levels (however, only 7 levels can be used when an interrupt is used or the TABP p instruction				
			is executed)				
LCD	Selective	bias value	1/2, 1/3 bias				
	Selective	duty value	2, 3, 4 duty				
	Common	output	4				
	Segment	output	20				
-	Internal r	esistor for	200 kΩ X 3				
	power su	pply					
Device structur	е		CMOS silicon gate				
Package			48-pin plastic molded QFP				
Operating temp	perature ra	ange	–20 °C to 70 °C				
Supply voltage			2.2 V to 5.5 V (One Time PROM version: 2.5 V to 5.5 V)				
Power	at active		2.5 mA ($f(XiN)$ = 8.0 MHz system clock = $f(XiN)/4$, VDD=5 V)				
dissipation	at clock o	perating	27.5 µA (at main clock oscillation stop, sub-clock oscillation frequency: 32.0 kHz, VDD=5 V)				
	ical value) at RAM back-up		0.1 μ A (at main clock oscillation stop, sub-clock oscillation stop, Ta=25 °C, VDD=5V)				

DEFINITION OF CLOCK AND CYCLE

PERFORMANCE OVERVIEW

• System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock can be selected by bits 0 and 3 of the clock control register MR as shown in the table below.

Table Selection of system clock

Regis	ter MR	System clock (STCK)					
MRз	MR ₀	Gystem clock (Grok)					
0	0	f(XIN)					
0	1	f(Xcin)					
1	0	f(XIN)/4					
1	1	f(Xcin)/4					

Note: $f(X_{N})/4$ is selected immediately after system is released from reset.

Instruction clock (INSTK)

The instruction clock is the standard clock for controlling CPU. The instruction clock is a signal derived from dividing the system clock by 3. The one cycle of the instruction clock is equivalent to the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

Pin	Name	Input/Output	Function
Vdd	Power supply	_	Connected to a plus power supply.
Vss	Ground	—	Connected to a 0 V power supply.
CNVss	CNVss	Input	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.
RESET	Reset input	I/O	An N-channel open-drain I/O pin for a system reset. A pull-up resistor is built-in
			this pin. When the watchdog timer causes the system to be reset or the low-
			supply voltage is detected, the RESET pin outputs "L" level.
Xin	Main clock input	Input	I/O pins of the main clock generating circuit. A ceramic resonator can be connected
Хоит	Main clock output	Output	between XIN pin and XOUT pin. A feedback resistor is built-in between them.
D0D4	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output
			structure is N-channel open-drain.
D5/INT	Output port D	I/O	1-bit output port. Port D₅ is also used as an INT input pin. When D₅/INT pin is
			used as the INT input pin, set the output latch to "1." The output structure is N-
			channel open-drain.
D6/XCIN	Output port D	I/O	Each pin of port D has an independent 1-bit output function. Ports D6 and D7 are
			also used as pins XCIN and XCOUT for the sub-clock generating circuit, respectively.
D7/Хсоит	Output a set D	0	When pins D ₆ /XcıN and D⁊/Xcout are used as the pins for the sub-clock generating
D7/ACOUT	Output port D	Output	circuit, a 32.0 kHz quartz-crystal oscillator can be connected between Xcin pin
			and Xcout pin. A feedback resistor is built-in between them.
P00–P03	I/O port P0	I/O	4-bit I/O port. It can be used as an input port when the output latch is set to "1."
			The output structure is N-channel open-drain. Every pin of the ports has a key-on
			wakeup function and a pull-up function.
P10–P13	I/O port P1	I/O	4-bit I/O port. It can be used as an input port when the output latch is set to "1."
			The output structure is N-channel open-drain. Every pin of the ports has a key-on
			wakeup function and a pull-up function. Both functions can be switched by software.
P20/SEG16-	Input port P2	I/O	4-bit input port. Ports P20-P23 are also used as the segment output pins SEG16-
P23/SEG19			SEG19, respectively.
CARR	Carrier wave output	Output	Carrier wave output pin for remote control transmit. The output structure is the
	for remote control		CMOS circuit.
SEG0-SEG15	Segment output	Output	LCD segment output pins.
COM0-COM3	Common output	Output	LCD common output pins. Pins COMo and COM1 are used at 1/2 duty, pins COMo-
			COM ₂ are used at 1/3 duty and pins COM ₀ –COM ₃ are used at 1/4 duty.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction
D5	INT	INT	D5
D6	Xcin	Xcin	D6
D7	Хсоит	Хсоит	D7
P20	SEG16	SEG16	P20
P21	SEG17	SEG17	P21
P22	SEG18	SEG18	P22
P23	SEG19	SEG19	P23

Notes 1: Pins except above have just single function.

2: The port D₅ is the output port and ports P20–P23 are the input ports.

CONNECTIONS OF UNUSED PINS

Pin	Connection	Pin	Connection
D0-D4	Connect to Vss, or set the output latch to	CARR	Open
D5/INT	"0" and open.	SEG0–SEG15	Open
D6/XCIN	Select ports D6 and D7 and connect to Vss,	COM0–COM3	Open
D7/Xcout	or set the output latch to "0" and open.	P00–P03	Set the output latch to "1" and open.
P20/SEG16-P23/	Select port P2 and connect to Vss, or select	P10-P13	Open or connect to Vss (Note)
SEG19	the segment output function and open.		

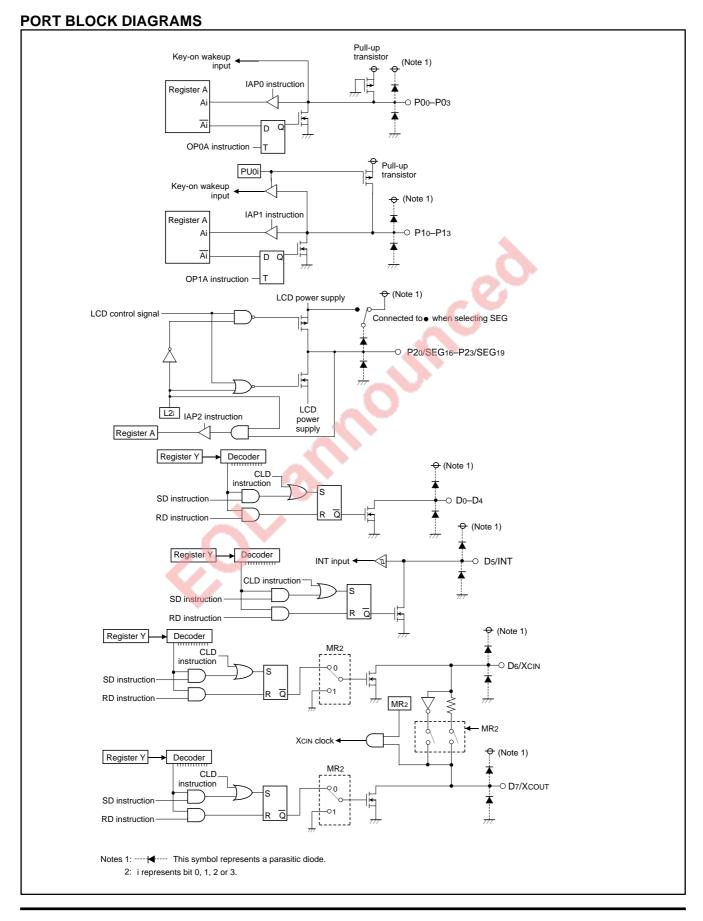
Note: In order to connect ports P10–P13 to Vss, turn off their pull-up transistors (Pull-up control register PU0i="0") by software. In order to make these pins open, turn on their pull-up transistors (register PU0i="1") by software, or turn off their pull-up transistors (register PU0i="0") and set the output latch to "0" (i = 0, 1, 2, or 3).

Be sure to select the key-on wakeup function and the pull-up function with every one port.

(Note in order to set the output latch to "0" and make pins open)

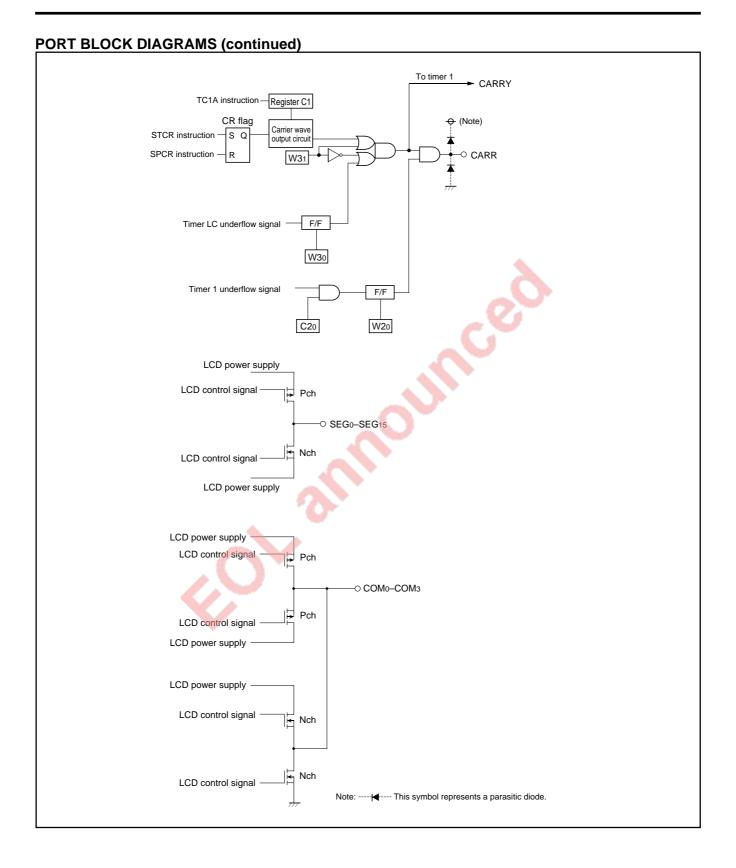
- After system is released from reset, a port is in a high-impedance state until the output latch of the port is set to "0" by software. Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note in order to connect unused pins to Vss or VDD)


• To avoid noise, connect the unused pins to Vss or Vbb at the shortest distance using a thick wire.

PORT FUNCTION

Port	Pin	Input/	Output structure	Control	Control	Control	Remark
FUIL	Font Fin	Output	utput		instructions registers		Remark
Port D	D0-D4, D5/INT,	Output	N-channel open-drain	1	SD	MR	
	D6/XCIN,	(8)			RD		
	D 7/Хсоит				CLD		
Port P0	P00-P03	I/O	N-channel open-drain	4	OP0A		Pull-up functions
		(4)			IAP0		Key-on wakeup functions
Port P1	P10-P13	I/O	N-channel open-drain	4	OP1A	PU0	Pull-up functions
		(4)			IAP1		(programmable)
							Key-on wakeup functions
							(programmable)
Port P2	P20/SEG16-	Input		4	IAP2		
	P23/SEG19	(4)					



SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag (CY)

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of A_0 is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4bit data, and for 8-bit data transfer together with register A. Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

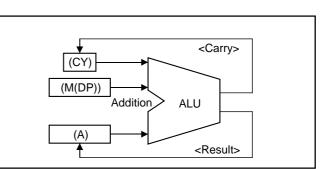


Fig. 1 AMC instruction execution example

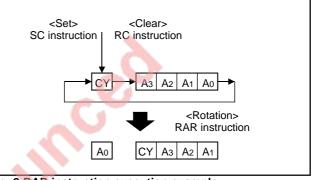
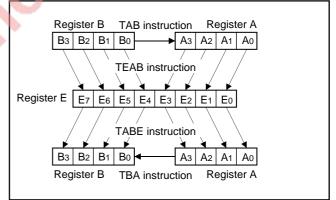
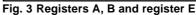




Fig. 2 RAR instruction execution example

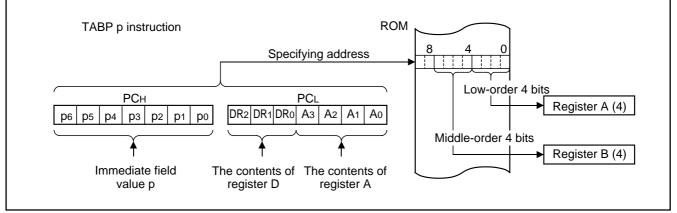


Fig. 4 TABP p instruction execution example

MITSUBISHI MICROCOMPUTERS

4551 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

(5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

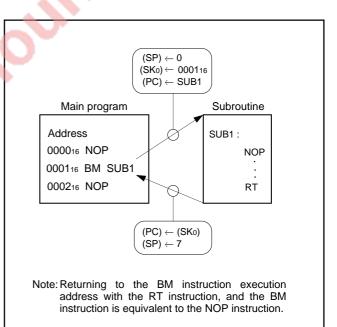
Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used when using an interrupt service routine or when executing a table reference instruction. Accordingly, be careful not to stack over when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

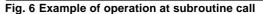
The register SK nesting level is pointed automatically by 3bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction. Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.


Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.


(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

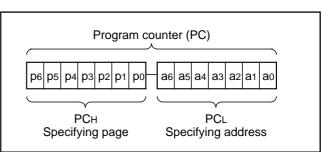
	Program co	unter (PC)				
Executing th call or table instruction	ne subroutine reference	Executing the return or table reference instruction				
	Sł	ко	(SP) = 0			
	Sł	(1	(SP) = 1			
	Sł	(2	(SP) = 2			
	Sł	(SP) = 3				
	Sł	(SP) = 4				
	Sł	(SP) = 5				
	Sł	6	(SP) = 6			
	Sł	K7	(SP) = 7			
ret by co Wi sta	tack pointer (SP) points "7" at reset or eturning from RAM back-up mode. It points "0" y executing the first BM instruction, and the ontents of program counter is stored in SKo. /hen the BM instruction is executed after eight ack registers are used ((SP) = 7), (SP) = 0 and the contents of SKo is destroyed.					

Fig. 5 Stack registers (SKs) structure

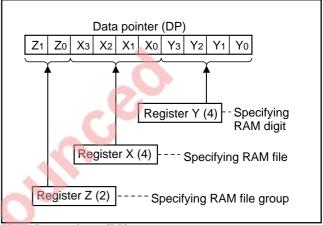
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

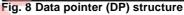
(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.


Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.


(9) Data pointer (DP)


Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position. When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

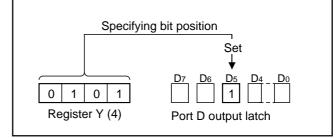
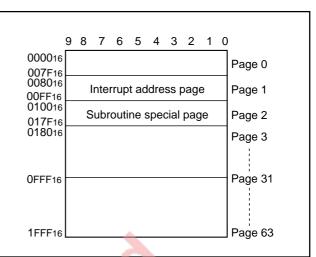


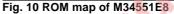
Fig. 9 SD instruction execution example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

PROGRAM MEMORY (ROM)

1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34551E8.


Table 1 ROM size and pages


Product	ROM size (X 10 bits)	Pages
M34551M4	4096 words	32 (0 to 31)
M34551E8	8192 words	64 (0 to 63)

A top part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP \ensuremath{p} instruction.

_			_		_	_		_
		7 6						
008016	EXIE	inai u	Inte	rrup	ot a	dare	ess	
								-
008416	Tin	ner 1 i	nteri	rupt	ade	dres	s	-
008616	Tin	ner 2 i	nter	rupt	ad	dres	s	
-								_
00FF16								

Fig. 11 Interrupt address page (addresses 008016 to 00FF16) structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

RAM includes the area corresponding to the LCD. A segment is turned on automatically when "1" is written in the bit corresponding to the segment.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

RAM size			
200 words X 4 bits (1120 bits)			
280 words X 4 bits (1120 bits)			

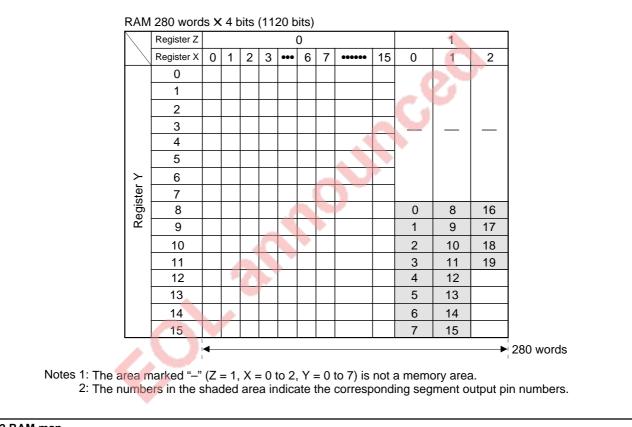


Fig. 12 RAM map

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- Interrupt enable flag (INTE) = "1" (Interrupt enabled)
- Interrupt enable bit = "1" (Interrupt request occurrence enabled)
- An interrupt activated condition is satisfied

(request flag = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bits (V10-V13)

Use an interrupt enable bit of interrupt control register V1 to select the corresponding interrupt request or skip instruction. Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

• an interrupt occurs, or

• the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority	Interrupt nome	Activated condition	Interrupt							
level	Interrupt name	Activated condition	address							
1	External 0 interrupt	Level change of	Address 0							
		INT pin	in page 1							
2	Timer 1 interrupt	Timer 1 underflow	Address 4							
			in page 1							
3	Timer 2 interrupt	Timer 2 underflow	Address 6							
			in page 1							

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Request flag	Enable bit	Skip instruction
External 0 interrupt	EXFO	V10	SNZ0
Timer 1 interrupt	T1F	V12	SNZT1
Timer 2 interrupt	T2F	V13	SNZT2

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of	Skip instruction	
Interrupt enable bit	interrupt request	Skip instruction	
1	Enabled	Invalid	
0	Disabled	Valid	

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC) An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE) INTE flag is cleared to "0" so that interrupts are disabled.
 Interrupt request flag

Only the request flag for the current interrupt source is cleared to "0."

• Data pointer, carry flag, skip flag, registers A and B The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after a branch to a sequence for storing data into stack register is performed. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return to main routine.

Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning to the main routine. (Refer to Figure 13)

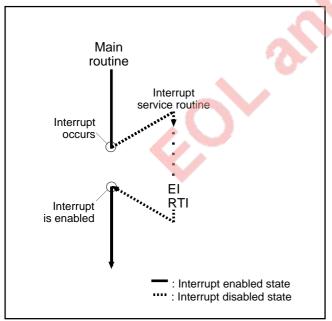
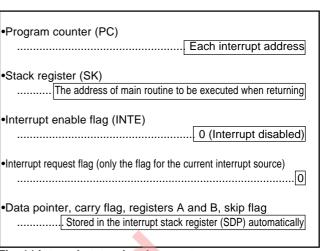
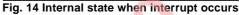
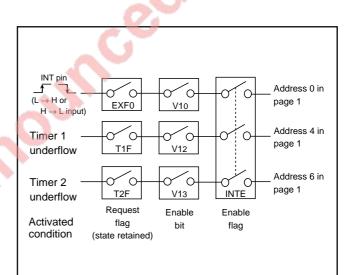
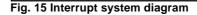






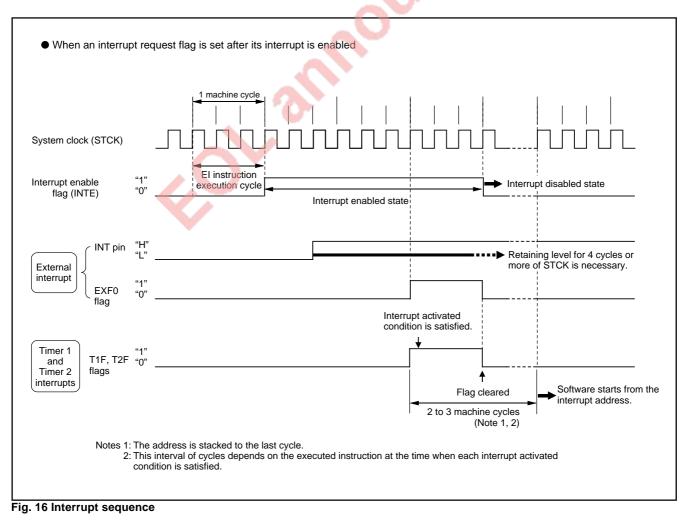
Fig. 13 Program example of interrupt processing

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

(6) Interrupt control register

 Interrupt control register V1
 Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register

Table 6 Interrupt control register


through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

	Interrupt control register V1		eset : 00002	at power down : 00002	R/W
V13	Timer 2 interrupt enable bit	0	Interrupt disabled (SNZT2 instruction is valid)		
VIS		1	Interrupt enabled (SNZT2 instruction is invalid)	
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
VIZ		1	Interrupt enabled (SNZT1 instruction is invalid)	
V11	Not used	0	This hit has no function, but used/write is enabled		
VII		1	This bit has no function, but read/write is enabled.		
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZ0 instruction is valid)	
V10		1	Interrupt enabled (SNZ0 instruction is invalid)	

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts occur only when the respective INTE flag, interrupt enable bits (V10–V13), and interrupt request flags (EXF0, T1F, T2F) are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

EXTERNAL INTERRUPTS

An external interrupt request occurs when a valid waveform (= waveform causing the external 0 interrupt) is input to an interrupt input pin (edge detection).

The external 0 interrupt can be controlled with the interrupt control register 11.

Table 7 External interrupt activated condition

Name	Input pin	Valid waveform	Valid waveform selection bit (I12)
External 0 interrupt	D5/INT	Falling waveform ("H"→"L")	0
		Rising waveform ("L" \rightarrow "H")	1

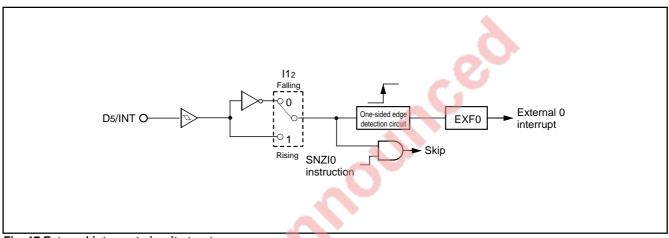


Fig. 17 External interrupt circuit structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to D₅/INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

The D₅/INT pin need not be selected the external interrupt input INT function or the normal output port D₅ function. However, the EXF0 flag is set to "1" when a valid waveform output from port D₅ is input to INT pin even if it is used as an output port D₅.

• External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to D_5/INT pin.

The valid waveform can be selected from rising waveform or falling waveform. An example of how to use the external 0 interrupt is as follows.

① Select the valid waveform with the bit 2 of register I1.

- ⁽²⁾ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- ③ Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction.
- ④ Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the D_5/INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

Table 8 External interrupt control register

Interrupt control register I1 at reset : 00002 at power down : state retained R/W 0 **I1**3 Not used This bit has no function, but read/write is enabled. 1 Falling waveform ("L" level of INT pin is recognized with the SNZIO 0 Interrupt valid waveform for INT pin instruction) 112 selection bit (Note 2) 1 Rising waveform ("H" level of INT pin is recognized with the SNZIO instruction) 0 **11**1 Not used This bit has no function, but read/write is enabled. 1 0 Not used 110 This bit has no function, but read/write is enabled. 1

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: Depending on the input state of D₅/INT pin, the external interrupt request flag EXF0 may be set to "1" when the contents of I1₂ is changed. Accordingly, set a value to bit 2 of register I1 and execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction.

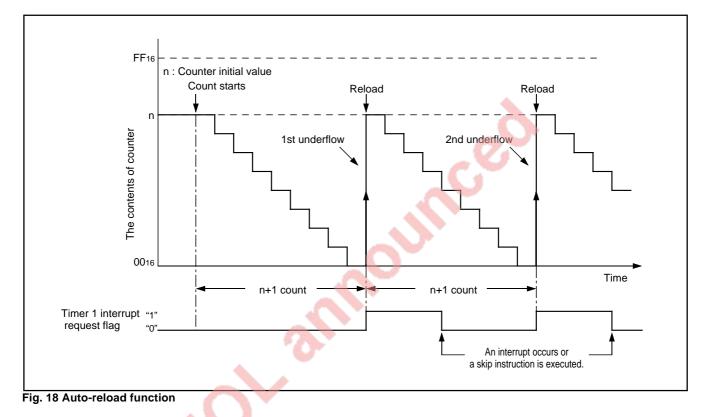
(2) External interrupt control register

rec

Interrupt control register I1
 Register I1 controls the valid waveform for the external 0
 interrupt. Set the contents of this register through register A
 with the TI1A instruction. The TAI1 instruction can be used
 to transfer the contents of register I1 to register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

TIMERS


The 4551 Group has the programmable timers.

Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a set value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fixed dividing frequency timer

The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" every n count of a count pulse.

The 4551 Group timer consists of the following circuits.

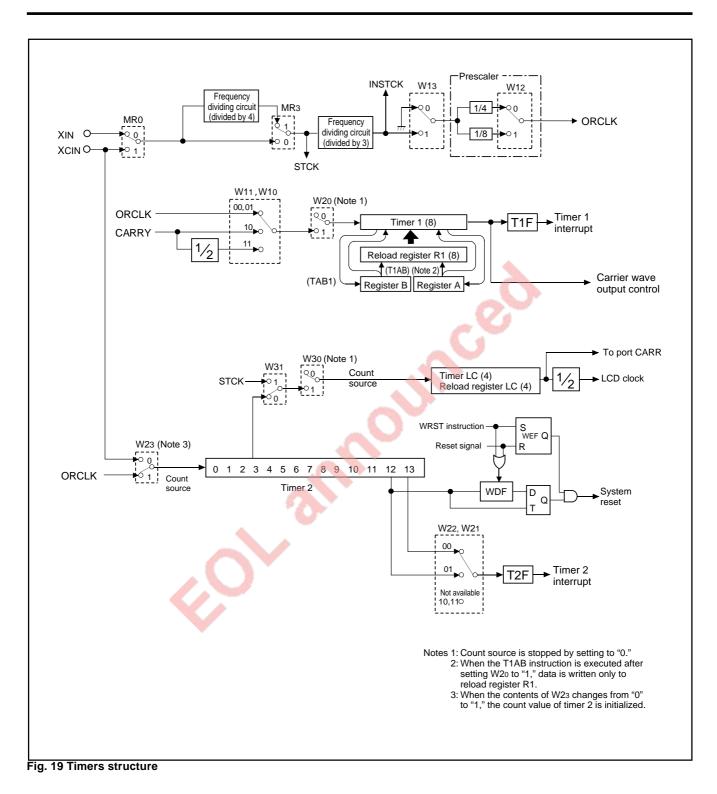
- Prescaler : frequency divider
- Timer 1 : 8-bit programmable timer
- Timer 2 : 14-bit fixed dividing frequency timer

Timer LC : 4-bit programmable timer

(Timers 1 and 2 have the interrupt function, respectively)

Prescaler, timer 1, timer 2 and timer LC can be controlled with the timer control registers W1, W2 and W3. Each function is described below.

Circuit	Structure	Count source	Frequency	Lice of output signal	Control
Circuit	Siluciule	Count source	dividing ratio	 Timer 1 interrupt Port CARR output control Timer 2 interrupt Divider for LCD Watchdog timer 	register
Prescaler	Frequency divider	 Instruction clock (INSTCK) 	4, 8	Timer 1 and 2 count sources	W1
Timer 1	8-bit programmable	Prescaler output (ORCLK)	1 to 256	Timer 1 interrupt	W1
	binary down counter	Carrier generating circuit		 Port CARR output control 	W2
		output (CARRY, CARRY/2)			
Timer 2	14-bit fixed dividing	Prescaler output (ORCLK)	16384	Timer 2 interrupt	W2
	frequency	• f(Xcin)		Divider for LCD	
				 Watchdog timer 	
Timer LC	4-bit programmable	Bit 3 of timer 2	1 to 16	Divider for LCD	W3
	binary down counter	 System clock (STCK) 		 Carrier output 	


Table 9 Function related timers

MITSUBISHI MICROCOMPUTERS

4551 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

able 10	Timer control registers					i	
	Timer control register W1		at	reset : 00002	at power down : 00002	R/W	
W13	Prescaler control bit	(0	Stop (prescaler stat	te initialized)		
VV 13	Prescaler control bit		1	Operating			
W12	Dresseler dividing ratio selection bit	0		Instruction clock (INSTCK) divided by 4			
VV 12	Prescaler dividing ratio selection bit		1 Instruction clock (INSTCK) divi		ISTCK) divided by 8	() divided by 8	
		W11	W10	Count source			
W11		0	0				
	Timer 1 count source selection bits	0	1		Prescaler output (ORCLK)		
W1o		1	0	Carrier output (CAF	RRY)		
		1	1	Carrier output divid	ed by 2 (CARRY/2)		

	Timer control register W2			reset : 10002 at power down : 02 R/W		
W23	Timer 2 count source selection bit	()	f(Xcin)		
VVZ3			1	Prescaler output (ORCLK)		
	-Timer 2 count value selection bits	W22	W21	Count source		
W22		0	0	Underflow occur every 2 ¹⁴ count		
		0	1	Underflow occur every 2 ¹³ count		
W21		1	0	Not available		
		1	1	Not available		
14/2+	120 Timer 1 control bit 0 1)	Stop (timer 1 state retained)		
W20			1	Operating		
			-			

Timer control register W3				at reset : 002	at power down : state retained	R/W
W31	W31 Timer LC count source selection bit		0		Bit 3 of timer 2 is output (timer 2 count source divided by 16)	
			1	State clock (STCK)		
W30	Timer LC control bit		0	Stop (timer LC state	e retained)	
VV30			1	Operating		

Note: "R" represents read enabled, and "W" represents write enabled.

"-" represents state retained.

(1) Timer control registers

• Timer control register W1

Register W1 controls the count source of timer 1, the frequency dividing ratio and count operation of prescaler. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

• Timer control register W2

Register W2 controls the count operation of timer 1 and count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register W3

Register W3 controls the count operation and count source of timer LC. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

(2) Precautions

Note the following for the use of timers.

Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

Count source

Stop timer 1 or timer LC counting to change its count source. When timer 2 count source changes from f(XcIN) to ORCLK (W2₃ = "0" \rightarrow W2₃ = "1"), the count value of timer 2 is initialized. However, when timer 2 count source changes from ORCLK to f(XcIN) (W2₃ = "1" \rightarrow W2₃ = "0") or the same count source is set again (W2₃ = "0" \rightarrow W2₃ = "0" or W2₃ = "1" \rightarrow W2₃ = "1"), the count value of timer 2 is not initialized.

• Timer 2

Timer 2 has the watchdog timer function (WDT). When timer 2 is used as the WDT, note that the processing to initialize the count value and the execution of the WRST instruction.

- Reading the count value
 Stop the prescaler and then execute the TAB1 instruction to read timer 1 data.
- Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

(3) Prescaler

Prescaler is a frequency divider. Its frequency dividing ratio can be selected. The count source of prescaler is the instruction clock (INSTCK).

Use the bit 2 of register W1 to select the prescaler dividing ratio and the bit 3 to start and stop its operation. When the bit 3 of register W1 is cleared to "0," prescaler is initialized, and the output signal (ORCLK) stops.

(4) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). When timer 1 stops, data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. When timer 1 is operating, data can be set only in the reload register (R1) with the T1AB instruction. When setting the next count data to reload register R1 while timer 1 is operating, be sure to set data before timer 1 underflows.

Timer 1 starts counting after the following process;

① set data in timer 1,

2 select the count source with bits 0 and 1 of register W1,
3 set the bit 0 of register W2 to "1."

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (autoreload function).

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Data can be read from timer 1 to registers A and B. Stop counting and then execute the TAB1 instruction to read its data.

(5) Timer 2 (interrupt function)

Timer 2 is a 14-bit binary down counter.

Timer 2 starts counting after the following process;

select the count source with the bit 3 of register W2, and
 the clock as a count source is supplied.

Timer 2 stops counting and its count value is retained when supply of a clock as a count source stops. Timer 2 is initialized at reset and when the count source changes from $f(X_{CIN})$ (W23="0") to ORCLK (W23="1").

The count value to set the timer 2 interrupt request flag (T2F) to "1" can be selected from every 8192 count or every 16384 count with bits 1 and 2 of register W2. The count source signal divided by 16 is output from timer 2.

Timer 2 can be used as a counter for clock in the clock operating mode (POF instruction executed).

(6) Timer LC

Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Timer LC starts counting after the following process;

- ① set data in timer LC,
- select the count source with the bit 1 of register W3,

③ set the bit 0 of register W3 to "1."

Timer LC is the timer for LCD clock generating. Also, it can be used as the multi-carrier generator by setting the bit 1 of register W3 to "1" and selecting the system clock (STCK) as a count source. When the multi-carrier generator is selected, the waveform which is the timer LC underflow signal divided by 2 can be output as a carrier wave from port CARR. At this time, stop the carrier generating circuit and LCD control circuit. When the multi-carrier generator (duty ratio: 1/2 fixed) is used, the enable/stop of the carrier wave output from port CARR can be set by the stop of timer LC or the carrier wave output auto-control function by timer 1.

(7) Timer interrupt request flags (T1F and T2F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1 and SNZT2).

Use the interrupt control register V1 to select an interrupt or a skip instruction.

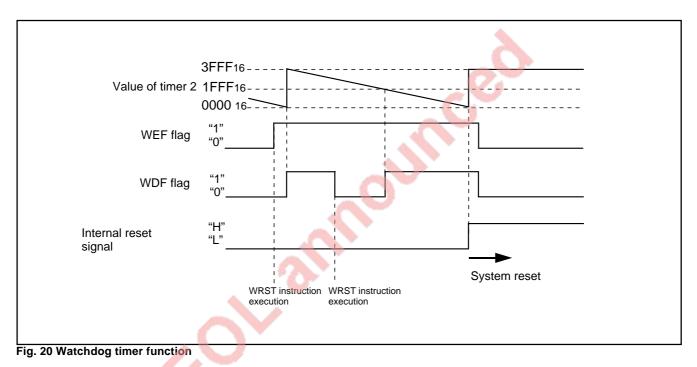
An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program runs wild. Watchdog timer consists of timer 2, watchdog timer enable flag (WEF), and watchdog timer flag (WDF).

When the WRST instruction is executed after system is released from reset, the WEF flag is set to "1." At this time, the watchdog timer starts operating. When the WEF flag is set to "1," it cannot be cleared to "0" until system reset is performed. Also, when the WRST instruction is not executed once, watchdog timer does not operate because the WEF flag retains "0."


When the watchdog timer is operating, the WDF flag is set to "1" every time the bit 12 of timer 2 is cleared from "1" to "0." This means that count is performed 8192 times. When the bit 12 of

timer 2 is cleared from "1" to "0" while the WDF flag is set to "1," the internal reset signal is generated and system reset is performed.

The WDF flag can be cleared to "0" with the WRST instruction. In the RAM back-up mode, through timer 2 count operation stops, its count value is retained and the WDF flag is initialized.

In the clock operating mode, timer 2 count operation is continued and the WDF flag is initialized.

When using the watchdog timer, execute the WRST instruction at a certain cycle which consists of timer 2's 8191 counts or less to keep the microcomputer operation normal.

The contents of the WDF flag are initialized in the RAM back-up mode.

If the WDF flag is set to "1" at the same time that the microcomputer enters the RAM back-up mode, system reset may be performed.

When using the watchdog timer and the RAM back-up mode, initialize the WDF flag with the WRST instruction just before the microcomputer enters the RAM back-up mode (refer to Figure 21).

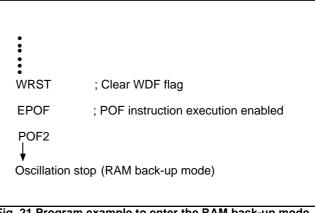


Fig. 21 Program example to enter the RAM back-up mode when using the watchdog timer

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

CARRIER GENERATING CIRCUIT

The 4551 Group has a carrier generating circuit that generates the transfer waveform by dividing the system clock (STCK) for each remote control carrier wave. Each carrier waveform can be output by setting the carrier wave selection register (C1). Also, timer 1 can auto-control the carrier wave output from port CARR by setting the carrier wave output control register (C2).

Re Se	egiste etting	er C1 valu	ie	STCR instruction Output waveform SPCR instruction	on Carrier wave		
C13	C12	C11	C10		Frequency	Duty	
0	0	0	0		STCK/24	1/3	
0	0	0	1		0101021	1/2	
0	0	1	0		STCK/16	1/4	
0	0	1	1			1/2	
0	1	0	0		STCK/2	1/2	
0	1	0	1		No carrier	W2\/A	
1	1	0	1			wave	
0	1	1	0		No avail	able	
1	1	1	0				
0	1	1	1	t	"L" fixe	ed	
1	1	1	1				
1	0	0	0		STCK/12	1/3	
1	0	0	1			1/2	
1	0	1	0		STCK/8	1/4	
1	0	1	1			1/2	
1	1	0	0		STCK	1/2	

Fig. 22 Carrier wave selection register

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

Table 11 Carrier generating circuit control register and control flag

	Carrier wave output control register C2		at reset : 02		at power down : 02	W
	C20 Carrier wave output auto-control bit	0	Auto-control output by timer 1 is invalid			
		Carrier wave output auto-control bit	1	Auto-control output	by timer 1 is valid	

Carrier wave generating control flag CR			at reset : 02	at power down : 02	W
CR	Carrier wave generating control	0	Carrier wave generating stop (SPCR instruction)		
		1	Carrier wave generation	ating start (STCR instruction)	

Note: "W" represents write enabled.

(1) Carrier generating circuit related registers

• Carrier wave selection register C1

Each carrier waveform can be selected by setting the register C1. Set the contents of this register through register A with the TC1A instruction.

• Carrier wave output control register C2

Timer 1 can auto-control the output enable interval and the output disable interval of the carrier wave output from port CARR by setting the register C2. Set the contents of this register through register A with the TC2A instruction. The setting of the output enable/disable interval is described

below.

- ① Validate the carrier wave output auto-control function (C20="1").
- ② Select the carrier wave or the carrier wave divided by 2 as the timer 1 count source.
- ③ Set the count value (the output enable interval of carrier wave from port CARR) to timer 1.
- ④ Operate timer 1 (W20="1").
- ⑤ Operate the carrier generating circuit (STCR instruction executed).
- Set the next count value (the output disable interval of carrier wave from port CARR) to reload register R1 before timer 1 underflow occurs.

The carrier wave is output from port CARR until the first timer 1 underflow occurs. The output of the carrier wave from port CARR is disabled and the next count value is loaded from reload register R1 to timer 1 by the first timer 1 underflow. Then, the output of carrier wave is disabled until the second timer 1 underflow. Also, the next enable interval of the carrier wave output can be set by setting the third count value to timer 1 reload register before the second timer 1 underflow occurs. If the carrier wave output auto-control function is invalidated (C20="0") while the carrier wave output is autocontrolled, the output of port CARR retains the state when the auto-control is invalidated regardless of timer 1 underflow. This state can be terminated by timer 1 stop (W20="0"). When the carrier wave output auto-control function is validated (C20="1") again after it is invalidated (C20="0"), the autocontrol of carrier wave output is started again when the next timer 1 underflow occurs.

(2) Carrier wave generating control flag (CR)

The CR flag is used to control the carrier wave generating operation of the carrier generating circuit. The CR flag is "1" and the carrier wave generating is started by executing the STCR instruction. The CR flag is "0" and the carrier wave generating is stopped by executing the SPCR instruction. The CR flag is "0" at system reset.

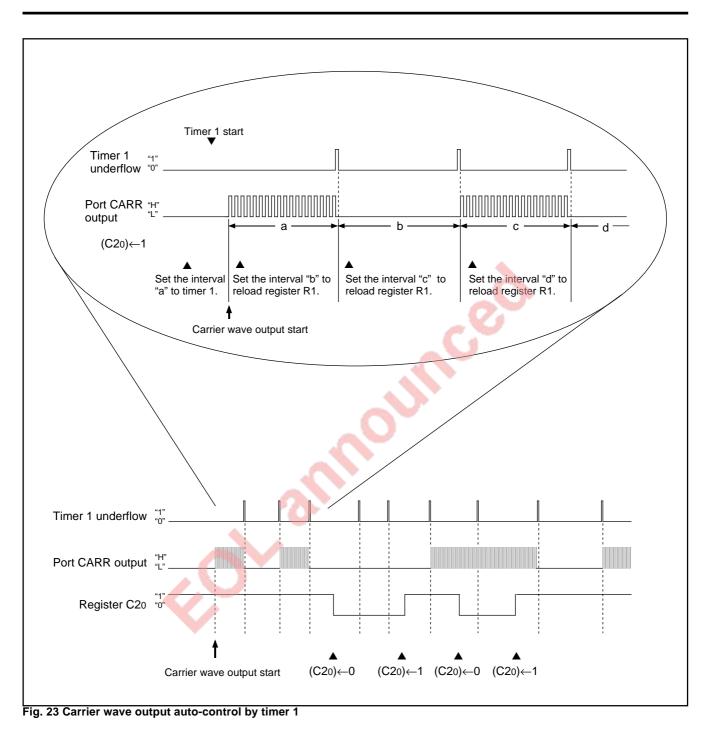
(3) Note on the carrier generating circuit stop

In order to stop the carrier wave which has the cycle longer than that of the instruction clock with the SPCR instruction, stop it at the point when the carrier wave outputs "L" level in the SPCR instruction execution cycle.

If this condition is not satisfied, the last "H" output interval of carrier wave is shortened.

(4) Notes when using the carrier wave output auto-control function

- Execute the STCR instruction after setting the timer 1 and register C2 in order to start the carrier generating circuit operation.
- Stop the timer 1 (W20="0") after stopping the carrier generating circuit (SPCR instruction executed) while the carrier wave output is disabled in order to stop the carrier wave output auto-control operation.
- If the carrier wave output auto-control function is invalidated (C20="0") while the carrier wave output is auto-controlled, the output of port CARR retains the state when the auto-control is invalidated regardless of timer 1 underflow. This state can be terminated by timer 1 stop (W20="0").


When the carrier wave output auto-control function is validated ($C2_0="1"$) again after it is invalidated ($C2_0="0"$), the auto-control of carrier wave output is started again when the next timer 1 underflow occurs. However, when the carrier wave output auto-control bit is changed during timer 1 underflow, the error-operation may occur.

• Use the carrier wave or the carrier wave divided by 2 as the timer 1 count source when the carrier wave output auto-control function is selected.

If the ORCLK is used as the count source, a hazard may occur in port CARR output because ORCLK is not synchronized with the carrier wave.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

LCD FUNCTION

The 4551 Group has an LCD (Liquid Crystal Display) controller/ driver. When proper voltage is applied to the LCD power supply input pins and data are set in timer control registers (W2, W3), timer LC, LCD control registers (L1, L2), and LCD RAM, the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias.

4 common signal output pins and 20 segment signal output pins can be used to drive the LCD. By using these pins, up to 80 segments (when 1/4 duty and 1/3 bias are selected) can be controlled to display. When the required number of segment pins is 19 or less, pins SEG16-SEG19 (4) can be used as input ports P20-P23.

(1) Duty and bias

There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.

- 1/2 duty, 1/2 bias
- 1/3 duty, 1/3 bias
- 1/4 duty, 1/3 bias

Table 12 Duty and maximum number of displayed pixels

Duty	Maximum number of displayed pixels	Used COM pins	
1/2	40 segments	COM ₀ , COM ₁ (Note)	
1/3	60 segments	COM0-COM2 (Note)	
1/4	80 segments	COM0–COM3	

Note: Leave unused COM pins open.

(2) LCD clock control

The LCD clock is determined by the timer 2 count source selection bit (W23), timer LC control bit (W30), and timer LC. Accordingly, the frequency (F) of the LCD clock is obtained by the following formula. Numbers (1 to 5) shown below the formula correspond to numbers in Figure 24, respectively.

• When using the prescaler output (ORCLK) as timer 2 count source (W23="1")

$$F = ORCLK \times \frac{1}{16} \times \frac{1}{LC + 1} \times \frac{1}{2}$$

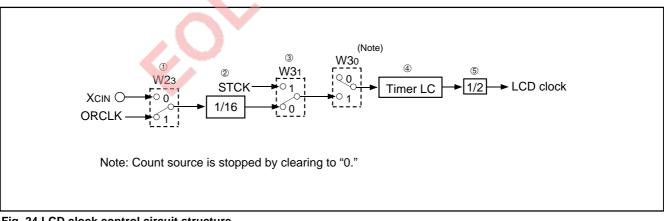
● When using the f(XciN) as timer 2 count source (W23="0")

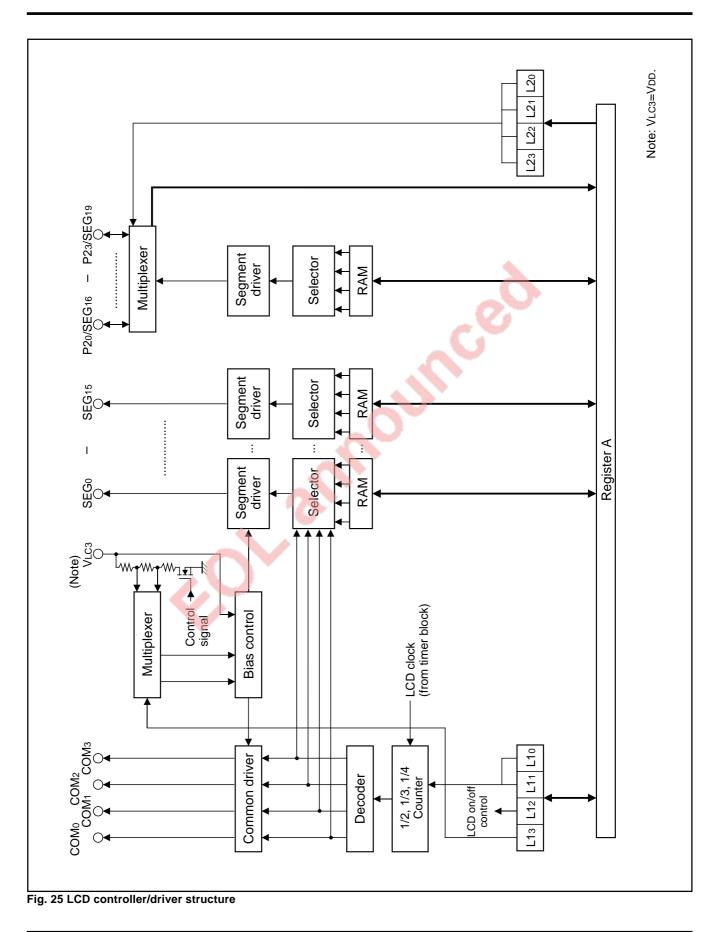
$$F = \underbrace{\begin{array}{c|c} f(X_{CIN}) \times \frac{1}{16} \times \frac{1}{LC+1} \times \frac{1}{2} \\ \hline 1 & 23 & 4 & 5 \end{array}}_{(LC: \ 0 \ to \ 15]}$$

The frame frequency and frame period for each display method can be obtained by the following formula:

Frame frequency =
$$\frac{F}{n}$$
 (Hz)
Frame period = $\frac{n}{E}$ (s)

F: LCD clock frequency 1/n: Duty




Fig. 24 LCD clock control circuit structure

MITSUBISHI MICROCOMPUTERS

4551 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

(3) LCD RAM

RAM contains areas corresponding to the liquid crystal display. When "1" is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed.

(4) LCD drive waveform

When "1" is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes $IV_{LC3}I$ and the display pixel at the cross section turns on.

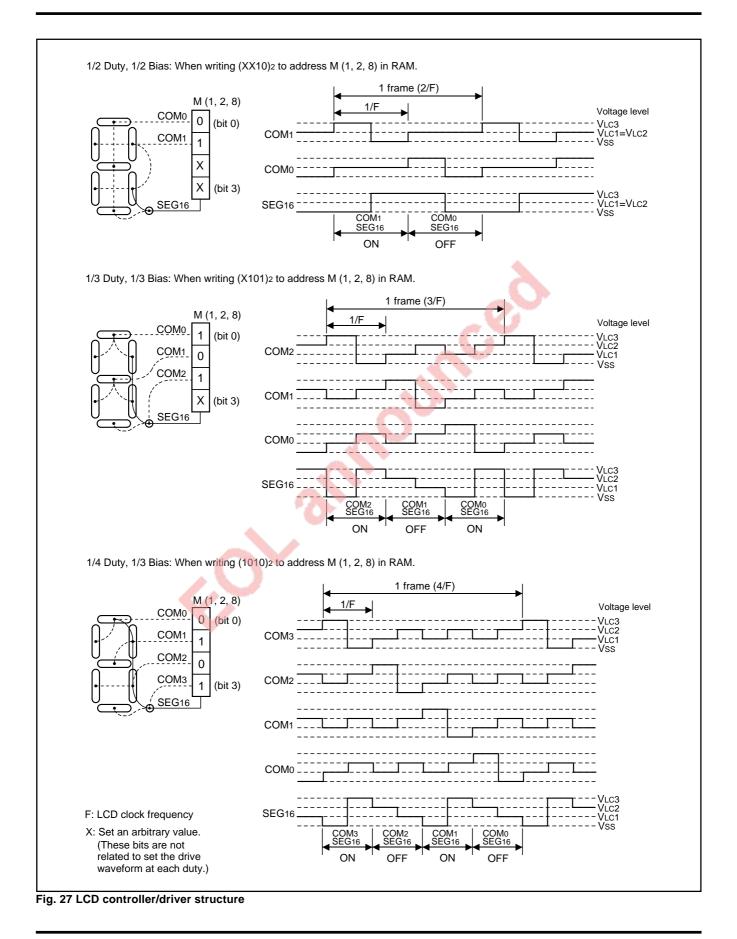
When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VLC3 level (=VDD).

Z	1											
Х		(C			1			2			
Y Bit	3	2	1	0	3	2	1	0	3	2	1	0
8	SEG0	SEG0	SEG0	SEG0	SEG8	SEG8	SEG8	SEG8	SEG16	SEG16	SEG16	SEG16
9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG17	SEG17	SEG17	SEG17
10	SEG2	SEG2	SEG2	SEG2	SEG10	SEG10	SEG10	SEG10	SEG18	SEG18	SEG18	SEG18
11	SEG3	SEG3	SEG3	SEG3	SEG11	SEG11	SEG11	SEG11	SEG19	SEG19	SEG19	SEG19
12	SEG4	SEG4	SEG4	SEG4	SEG12	SEG12	SEG12	SEG12	8	Ś		
13	SEG5	SEG5	SEG5	SEG5	SEG13	SEG13	SEG13	SEG13				
14	SEG6	SEG6	SEG6	SEG6	SEG14	SEG14	SEG14	SEG14				
15	SEG7	SEG7	SEG7	SEG7	SEG15	SEG15	SEG15	SEG15				
COM	COM3	COM2	COM1	COM0	COM3	COM2	COM1	COMo	COM3	COM ₂	COM1	COM0

Note: The area marked "----" is not the LCD display RAM.

Fig. 26 LCD RAM map

Table 13 LCD control registers


	LCD control register L1			reset : 00002	at power down : state retained R/W		
L13	Not used	0		This bit has no func	ction, but read/write is enabled		
L12	LCD on/off bit		0 Off				
L12			1	On			
			L10	Duty	Bias		
L11	LCD duty and bias selection bits	0	0		Not available		
		0	1	1/2	1/2		
L10		1	0	1/3	1/3		
1.0			1	1/4	1/3		

	LCD control register L2		t reset : 11112	at power down : state retained	W
L23	P23/SEG19 pin function switch bit	0	SEG19		
L23		1	P23		
L22	P22/SEG18 pin function switch bit	0	SEG18		
LZ2		1	P22		
L21	P21/SEG17 pin function switch bit	0	SEG17		
		1	P21		
L20	P20/SEG16 pin function switch bit	0	SEG ₁₆		
L20		1	P20		

Note: "R" represents read enabled, and "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied;

• the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to RESET pin, software starts from address 0 in page 0.

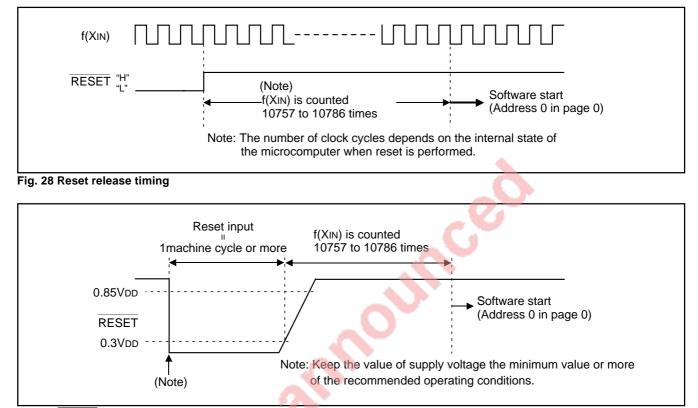


Fig. 29 RESET pin input waveform and reset operation

(1) Power-on reset

Reset can be automatically performed at power on (poweron reset) by the built-in power-on reset circuit. When the builtin power-on reset circuit is used, the time for the supply voltage to reach the minimum operating voltage must be set to 100 μs or less. If the rising time exceeds 100 μs , connect a capacitor between the $\overline{\text{RESET}}$ pin and Vss at the shortest distance, and input "L" level to $\overline{\text{RESET}}$ pin until the value of supply voltage reaches the minimum operating voltage.

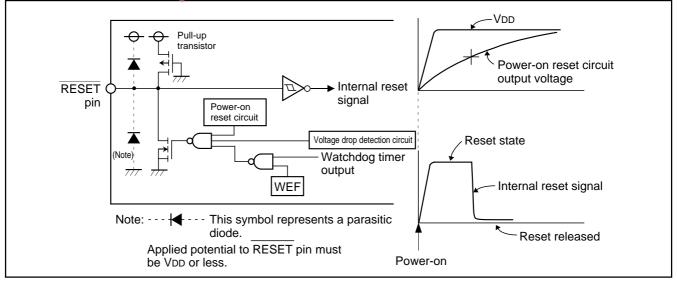


Fig. 30 Power-on reset circuit example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

The contents of timers, registers, flags and RAM except those

shown in Figure 31 are undefined, so set the initial values to

(2) Internal state at reset

Table 14 shows port state at reset, and Figure 31 shows internal state at reset (they are retained after system is released from reset).

Table 14 Port state at reset

Name	Function	State
D0-D4, D5/INT	D0-D4, D5	Llist impedance (Nets 4)
D ₆ /Xcin, D ₇ /Xcout	D6, D7	High impedance (Note 1)
P00-P03	P00-P03	"H" (VDD) level (Note 1)
P10-P13	P10-P13	(Notes 1, 2)
P20/SEG16-P23/SEG19	P20-P23	High impedance
SEG0-SEG15	SEG0-SEG15	
COM0-COM3	COM0–COM3	VLC3 (VDD) level
CARR	CARR	"L" (Vss) level

them.

Notes 1: Output latch is set to "1."

2: The pull-up transistor is turned off.

Program counter (PC)	
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	0 (Interrupt disabled)
Power down flag (P)	0
External 0 interrupt request flag (EXF0)	0
Interrupt control register V1	0000 (Interrupt disabled)
Interrupt control register I1	
Timer 1 interrupt request flag (T1F)	0
Timer 2 interrupt request flag (T2F)	0
Watchdog timer flag (WDF)	0
Watchdog timer enable flag (WEF)	0
Timer control register W1	
Timer control register W2	
Timer control register W3	
Clock control register MR	1000
Carrier wave selection register C1	
Carrier wave output control register C2	0
Carrier wave generating control flag CR	
LCD control register L1	
LCD control register L2	
Pull-up control register PU0	
General-purpose register V2	
Carry flag (CY)	0
Register A	
• Register B	
Register D	
• Register EX	XXXXXXXX
Data pointer X	
Data pointer Y	
Data pointer Z	
Stack pointer (SP)	
	"X" represents undefined.

Fig. 31 Internal state at reset

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

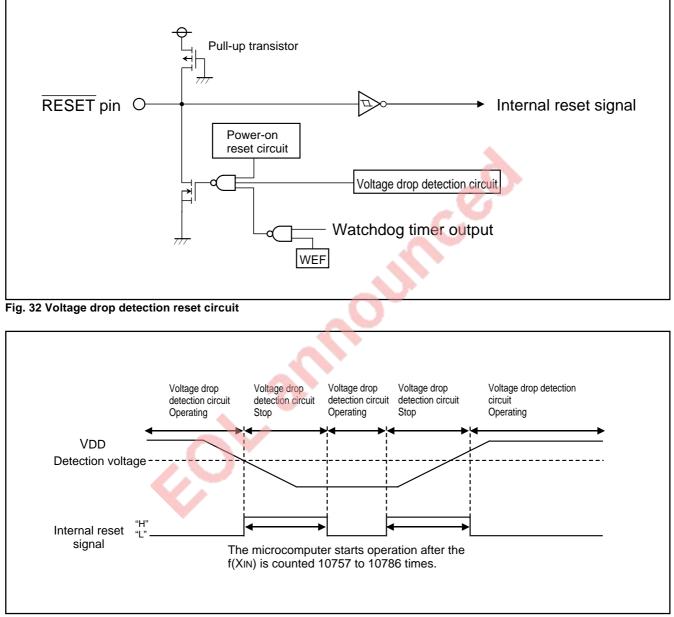


Fig. 33 Voltage drop detection circuit operation waveform

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

POWER DOWN FUNCTION

The 4551 Group has 2-type power down functions.

- Clock operating mode POF instruction
- RAM back-up mode POF2 instruction

Power down is performed by executing each instruction. Above power down functions are different from reset in start conditions. Table 15 shows the function and states retained at power down. Figure 36 shows the state transition.

- Return from power down state Warm start condition
- Return from reset state Cold start condition

(1) Clock operating mode

The following functions and states are retained.

- RAM
- Reset circuit
- XCIN-XCOUT oscillation
- LCD display
- Timer 2

(2) RAM back-up mode

The following functions and states are retained.

- RAM
- Reset circuit

Unlike the clock operating mode, all oscillations stop in the RAM back-up mode.

(3) Warm start condition

The system returns from the power down state when;

the external wakeup signal is input or the timer 2 underflow occurs

in the clock operating mode, or when;

 the external wakeup signal is input in the RAM back-up mode.

In either case, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(4) Cold start condition

The CPU starts executing the software from address 0 in page 0 when;

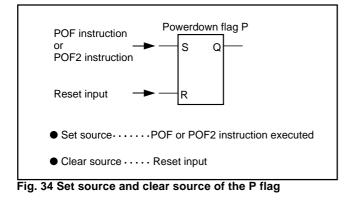
- reset pulse is input to RESET pin, or
- reset by watchdog timer is performed. In this case, the P flag is "0."

Table 15 Functions and states retained at power down

	Power	r down
Function	Clock	RAM
	operating	back-up
Program counter (PC), registers A, B,	x	x
carry flag (CY), stack pointer (SP) (Note 2)		~
Contents of RAM	0	0
Port level	0	0
Clock control register MR	0	0
Timer control register W1	X	X
Timer control registers W2, W3	0	0
Interrupt control register V1	X	X
Interrupt control register I1	0	0
Carrier wave control registers and flag (C1, C2, CR)	X	X
LCD display function	0	(Note 3)
LCD control registers L1, L2	0	0
Timer LC	0	(Note 4)
Timer 1 function	×	x
Timer 2 function	0	0
External 0 interrupt request flag (EXF0)	×	X
Timer 1 interrupt request flag (T1F)	X	X
Timer 2 interrupt request flag (T2F)	0	0
Watchdog timer flag (WDF)	0	×
Watchdog timer enable flag (WEF)	0	0
Interrupt enable flag (INTE)	X	X
General-purpose register V2	×	X

Notes 1: "O" represents that the function can be retained, and "X" represents that the function is initialized.

- Registers and flags other than the above are undefined at power down, and set an initial value after returning.
- 2: The stack pointer (SP) points the level of the stack register and is initialized to "1112" at power down.
- 3: LCD is turned off.
- 4: The state of the timer is undefined.


MITSUBISHI MICROCOMPUTERS

4551 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

(5) Identification of the start condition

Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction. The warm start condition (timer 2 or external wakeup signal) can be identified by examining the state of T2F flag.

(6) Return signal

An external wakeup signal or timer 2 interrupt request flag is used to return from the clock operating mode.

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 16 shows the return condition for each return source.

Table 16 Return source and return condition

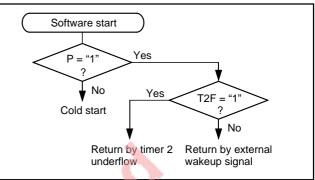


Fig. 35 Start condition identified example using the SNZP instruction

(7) Port P1 control register

• Pull-up control register PU0 Register PU0 controls the ON/OFF of the port P1 pull-up transistor and the ON/OFF of the key-on wakeup function. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.

Return source		Return condition	Remarks			
dn	Ports P0, P1 Returns by an external falling P		Port P0 shares the falling edge detection circuit with port P1. The key-on			
wakeup nal		edge input ("H"→"L").	wakeup function of port P0 is always valid. The only key-on wakeup			
1 · =			function of the port P1 bit of which the pull-up transistor is turned on is			
External sig			valid. Set all the port using the key-on wakeup function to "H" level before			
xte			going into the power down state.			
Ш						
Time	r 2 interrupt	Returns by timer 2 underflow and	The timer 2 interrupt request flag (T2F) can be used only when system			
reques	st flag	setting T2F to "1."	returns from the clock operating mode (POF instruction execution).			
			However, if the POF and POF2 instructions are executed while the T2F =			
		Ŧ	"1", its operation is recognized as the return condition and system returns			
			from the clock operating mode.			

Note: P1 pin has the pull-up transistor which can be turned on/off by software.

Table 17 Pull-up control register

Pull-up control register PU0		at reset : 00002		at power down : state retained	R/W		
DU O.	Port P13 pull-up transistor		Pull-up transistor OFF, no key-on wakeup				
PU03	control bit	1 Pull-up transist		N, key-on wakeup			
DUO	Port P1 ₂ pull-up transistor		Pull-up transistor OFF, no key-on wakeup				
PU02	control bit	1	Pull-up transistor ON, key-on wakeup				
DUO.	PU01 Port P11 pull-up transistor control bit		Pull-up transistor O	FF, no key-on wakeup			
P001			Pull-up transistor O	N, key-on wakeup			
	Port P1o pull-up transistor		Pull-up transistor O	FF, no key-on wakeup			
PU00	control bit	1	Pull-up transistor ON, key-on wakeup				

Note: "R" represents read enabled, and "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

(8) State transition

State transition is described using Figure 36.

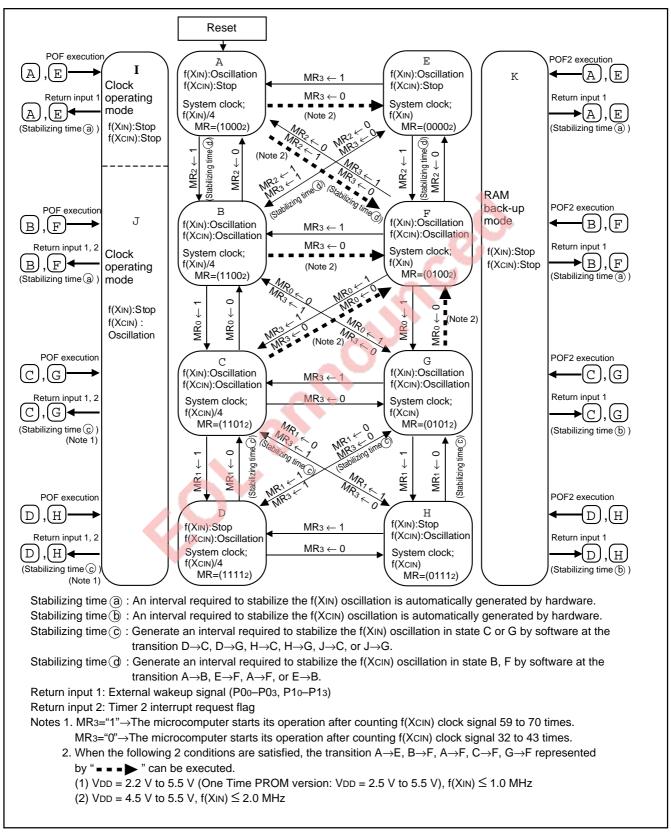


Fig. 36 State transition

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- Clock generating circuit
- Control circuit to stop the clock oscillation
- System clock (STCK) selection circuit
- Instruction clock (INSTCK) generating circuit
- Control circuit to return from the power down state

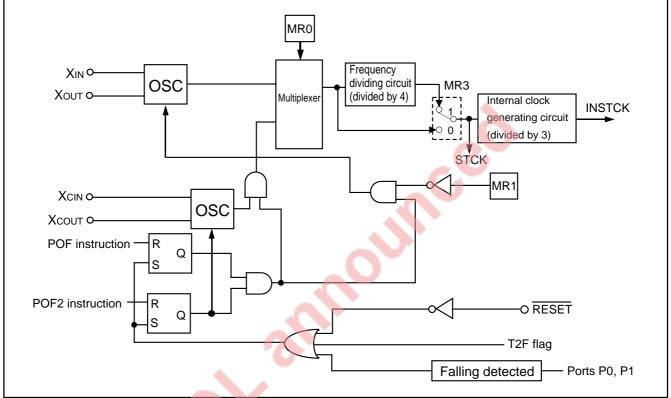


Fig. 37 Clock control circuit structure

(1) Clock control register

 Clock control register MR Register MR controls the system clock. Set the contents of this register through register A with the TMRA

instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

Table 18 Clock control register

	Clock control register MR	a	t reset : 1	0002	at power down : state retained	R/W				
			MR ₀ =0	f(XIN)						
		0	MR ₀ =1	/IRo=1 f(Xcin)						
MRз	System clock (STCK) selection bit	1	MR ₀ =0	=0 f(XIN)/4						
		1	MR ₀ =1	MRo=1 f(Xcin)/4						
		0	f(Xcin) c	scillation st	op, ports D ₆ and D ₇ selected					
MR2	f(Xcin) oscillation circuit control bit	1	f(Xcin) c	f(Xcin) oscillation enabled, ports D6 and D7 not selected						
		0	Oscillati	on enabled						
MR1	f(XIN) oscillation circuit control bit	1	Oscillation stop							
			f(XIN)							
MR ₀	Clock selection bit	1	f(Xcin)							

Note: "R" represents read enabled, and "W" represents write enabled.

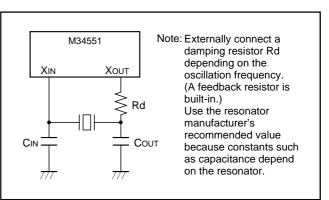
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

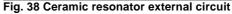
(2) f(XIN) clock generating circuit

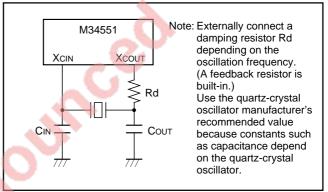
Clock signal $f(X_{IN})$ is obtained by externally connecting a ceramic resonator. Connect this external circuit to pins X_{IN} and X_{OUT} at the shortest distance. A feedback resistor is built in between pins X_{IN} and X_{OUT} .

(3) f(Xcin) clock generating circuit

Clock signal $f(X_{CIN})$ is obtained by externally connecting a quartz-crystal oscillator. Connect this external circuit to pins X_{CIN} and X_{COUT} at the shortest distance. A feedback resistor is built in between pins X_{CIN} and X_{COUT} .


ROM ORDERING METHOD


Please submit the information described below when ordering Mask ROM.


(1) M34551M4-XXXFP Mask ROM Order Confirmation Form

(2) Data to be written into mask ROM	EPROM
(three sets containing the identical data)	

(3) Mark Specification Form 1

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

LIST OF PRECAUTIONS

1 Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1 $\mu\text{F})$ between pins V_DD and Vss at the shortest distance,
- · equalize its wiring in width and length, and

· use the thickest wire.

In the built-in PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/VPP pin as close as possible).

2 Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

③Count source

Stop timer 1 or timer LC counting to change its count source. When timer 2 count source changes from $f(X_{CIN})$ to ORCLK (W2₃ = "0" \rightarrow W2₃ = "1"), the count value of timer 2 is initialized. However, when timer 2 count source changes from ORCLK to $f(X_{CIN})$ (W2₃ = "1" \rightarrow W2₃ = "0") or the same count source is set again (W2₃ = "0" \rightarrow W2₃ = "0" or W2₃ = "1" \rightarrow W2₃ = "1"), the count value of timer 2 is not initialized.

④ Timer 2

Timer 2 has the watchdog timer function (WDT). When timer 2 is used as the WDT, note that the processing to initialize the count value and the execution of the WRST instruction.

⑤ Reading the count value

Stop the prescaler and then execute the TAB1 instruction to read timer 1 data.

[®] Writing to reload register R1

Write the data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

1 Notes when using the carrier wave output auto-control function

- Execute the STCR instruction after setting the timer 1 and register C2 in order to start the carrier generating circuit operation.
- Stop the timer 1 (W20="0") after stopping the carrier generating circuit (SPCR instruction executed) while the carrier wave output is disabled in order to stop the carrier wave output auto-control operation.
- If the carrier wave output auto-control function is invalidated (C20="0") while the carrier wave output is auto-controlled, the output of port CARR retains the state when the autocontrol is invalidated regardless of timer 1 underflow. This state is released by timer 1 stop (W20="0").

When the carrier wave output auto-control function is validated ($C2_0="1"$) again after it is invalidated ($C2_0="0"$), the auto-control of carrier wave output is started again when the next timer 1 underflow occurs. However, when the carrier wave output auto-control bit is changed during timer 1 underflow, the error-operation may occur.

• Use the carrier wave or the carrier wave divided by 2 as the timer 1 count source when the carrier wave output auto-control function is selected.

If the ORCLK is used as the count source, a hazard may occur in port CARR output because ORCLK is not synchronized with the carrier wave.

8 D5/INT pin

When the interrupt valid waveform of D₅/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

- Clear the bit 0 of register V1 to "0" and then change the interrupt valid waveform of D₅/INT pin with the bit 2 of register I1 (refer to Figure 40⁽¹⁾).
- Clear the bit 2 of register I1 to "0" and execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction (refer to Figure 40⁽²⁾). Depending on the input state of the D₅/INT pin, the external 0 interrupt request flag (EXF0) may be set to "1" when the interrupt valid waveform is changed.

LA	4	; (XXX 02)	
TV1A LA	4	; The SNZ0 instruction is valid	1
TI1A		; Change of the interrupt valid w	/aveform
NOP			2
SNZ0 NOP		;The SNZ0 instruction is execut	ed
:	х	: this bit is not related to the settir	ng of INT.

Fig. 40 External 0 interrupt program example

One Time PROM version

The operating power voltage of the One Time PROM version is within the range of 2.5 V to 5.5 V.

Multifunction

Note that the port D_5 output function can be used even when INT function is selected.

Power down instruction (POF instruction, POF2 instruction) Execute the POF or POF2 instruction immediately after executing the EPOF instruction to enter the power down state. Note that system cannot enter the power down state when executing only the POF or POF2 instruction.

12 Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

MITSUBISHI MICROCOMPUTERS

4551 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

LIST OF INSTRUCTION FUNCTION

Olouping	Mnemonic	Function	Grouping	Mnemonic	Function	Grouping	Mnemonic	Function
	ТАВ	(A) ← (B)	nsfer	XAMI j	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \end{array}$		SB j	(Mj(DP)) ← 1 j = 0 to 3
	ТВА	$(B) \leftarrow (A)$	RAM to register transfer		j = 0 to 15 (Y) ← (Y) + 1	ration	RB j	$(Mj(DP)) \leftarrow 0$
	TAY	$(A) \leftarrow (Y)$	to regi	ТМА ј	$(M(DP)) \leftarrow (A)$	Bit operation		j = 0 to 3
	TYA	$(Y) \leftarrow (A)$	RAM		$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Ш	SZB j	(Mj(DP)) = 0 ? j = 0 to 3
sfer	TEAB	$(E_7-E_4) \leftarrow (B)$ $(E_3-E_0) \leftarrow (A)$		LA n	(A) ← n n = 0 to 15	uo	SEAM	(A) = (M(DP)) ?
Register to register transfer	TABE	$\begin{array}{l} (B) \leftarrow (E_{7}\text{-}E_{4}) \\ (A) \leftarrow (E_{3}\text{-}E_{0}) \end{array}$		TABP p	$(SP) \leftarrow (SP) + 1$	Comparison operation	SEA n	(A) = n ? n = 0 to 15
er to reg	TDA	$(DR_2-DR_0) \leftarrow (A_2-A_0)$			$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR_2-DR_0,$	0	Ва	(PCL) ← a6–a0
Regist	TAD	$(A_2-A_0) \leftarrow (DR_2-DR_0)$ $(A_3) \leftarrow 0$			$\begin{array}{l} A_{3}-A_{0})\\ (B)\leftarrow(ROM(PC))7 \text{ to } 4\\ (A)\leftarrow(ROM(PC))3 \text{ to } 0 \end{array}$	Branch operation	BL p, a	(РСн) ← р (РС∟) ← а6–ао
	TAZ	$\begin{array}{l} (A_1,A_0) \leftarrow (Z_1,Z_0) \\ (A_3,A_2) \leftarrow 0 \end{array}$			$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Branch o	BLA p	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR_2-DR_0)$ $A_3-A_0)$
	ТАХ	$(A) \gets (X)$		АМ	$(A) \leftarrow (A) + (M(DP))$		BM a	(SP) ← (SP) + 1
	TASP	$(A_2-A_0) \leftarrow (SP_2-SP_0)$ $(A_3) \leftarrow 0$	Arithmetic operation	AMC	$(A) \leftarrow (A) + (M(DP))$ + (CY) (CY) ← Carry			$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a6-a0$
es	LXY x, y	$ (X) \leftarrow x, x = 0 \text{ to } 15 (Y) \leftarrow y, y = 0 \text{ to } 15 $	Arithmetic	A n	$(A) \leftarrow (A) + n$ n = 0 to 15	eration	BML p, a	(SP) ← (SP) + 1 (SK(SP)) ← (PC)
AM addresses	LZ z	$(Z) \leftarrow z, z = 0 \text{ to } 3$		AND	$(A) \leftarrow (A)AND(M(DP))$	Subroutine operation		(PCн) ← p (PCL) ← a6–a0
RAM a	INY	(Y) ← (Y) + 1		OR	$(A) \gets (A)OR(M(DP))$	Subroi	BMLA p	$(SP) \gets (SP) + 1$
	DEY	$(Y) \leftarrow (Y) - 1$		SC	(CY) ← 1			$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$
	TAM j	$\begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$		RC	$(CY) \leftarrow 0$			$(PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0)$
ansfer	XAM j	$(A) \leftarrow \rightarrow (M(DP))$		SZC	(CY) = 0 ?		RTI	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
RAM to register transfer		$\begin{array}{l} (X) \leftarrow (X) EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$		CMA RAR	$(A) \leftarrow (\overline{A})$ $\rightarrow \boxed{CY} \rightarrow \boxed{A_3A_2A_1A_0}$	beration	RT	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
RAM to	XAMD j	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array}$				Return operation	RTS	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

LIST OF INSTRUCTION FUNCTION (CONTINUED)

Grouping	Mnemonic	Function	Grouping	Mnemonic	Function	Grouping	Mnemonic	Function
	DI	$(INTE) \leftarrow 0$		TLCA	$(TLC) \leftarrow (A)$ $(RLC) \leftarrow (A)$	ration	TC1A	(C1) ← (A)
	EI	$(INTE) \leftarrow 1$		SNZT1	(T1F) = 1 ?	ig oper	STCR	Carrier wave generating start
Ę	SNZ0	(EXF0) = 1 ? After skipping the next instruction, $(EXF0) \leftarrow 0$	Timer operation		After skipping the next instruction, $(T1F) \leftarrow 0$	Carrier wave generating operation	SPCR	Carrier wave generating stop
Interrupt operation	SNZI0	l12 = 1 : (INT0) = "H" ? l12 = 0 : (INT0) = "L" ?	Tim	SNZT2	(T2F) = 1 ? After skipping the next instruction,	Carrier w	TC2A	$(C20) \leftarrow (A0)$
Interru	TAV1	(A) ← (V1)			$(T2F) \leftarrow 0$		NOP	$(PC) \leftarrow (PC) + 1$
	TV1A	(V1) ← (A)		IAP0	(A) ← (P0)	0	POF	Transition to clock operating mode
	TAI1	(A) ← (I1)		OP0A	(P0) ← (A)		POF2	Transition to RAM
	TI1A	(I1) ← (A)		IAP1	(A) ← (P1)			back-up mode
	TAW1	(A) ← (W1)		OP1A	(P1) ← (A)	L L	EPOF	Power down instruction (POF, POF2) valid
	TW1A	(W1) ← (A)	ation	IAP2	(A) ← (P2)	Other operation	SNZP	(P) = 1 ?
	TAW2	(A) ← (W2)	ut oper	CLD	(D) ← 1	Other o	WRST	$(WDF) \leftarrow 0, (WEF) \leftarrow 1$
	TW2A	(W2) ← (A)	Input/Output operation	RD	$(D(Y)) \leftarrow 0$ (Y) = 0 to 9		TAMR	(A) ← (MR)
	TAW3	(A1, A0) ← (W31, W30)	<u> </u>	SD	$(D(Y)) \leftarrow 1$ (Y) = 0 to 9		TMRA	(MR) ← (A)
	ТѠЗА	(W31, W30) ← (A1, A0)		TPU0A	(T) = 0 to 9 (PU0) ← (A)		TAV2	(A) ← (V2)
eration	TAB1	(B) ← (T17–T14) (A) ← (T13–T10)		TAPU0	$(A) \leftarrow (PU0)$		TV2A	(V2) ← (A)
Timer operati	T1AB	at timer 1 stop (W20=0)		TL1A	(L1) ← (A)			
Ti		$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$	eration	TAL1	(A) ← (L1)			
		$\begin{array}{l} (\text{R1}_3-\text{R1}_0) \leftarrow (\text{A}) \\ (\text{T1}_3-\text{T1}_0) \leftarrow (\text{A}) \\ \text{At timer 1 operating} \\ (\text{W2}_0=1), \\ (\text{R1}_7-\text{R1}_4) \leftarrow (\text{B}) \end{array}$	LCD control operation	TL2A	(L2) ← (A)			
		(R13–R10) ← (A)						

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

INST	RUC	TION	1 C O	DE T	ABL	E													
	D9–D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	1	011000
D3– D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BMLA	-	TASP	A 0	LA 0	TABP 0	TABP 16	TABP 32*	TABP 48*	BML	BML	BL	BL	вм	в
0001	1	_	CLD	SZB 1	-	-	TAD	A 1	LA 1	TABP 1	TABP 17	TABP 33*	TABP 49*	BML	BML	BL	BL	вм	в
0010	2	POF	_	SZB 2	_	_	ТАХ	A 2	LA 2	TABP 2	TABP 18	TABP 34*	TABP 50*	BML	BML	BL	BL	вм	в
0011	3	SNZP	INY	SZB 3	_	_	TAZ	A 3	LA 3	TABP 3	TABP 19	TABP 35*	TABP 51*	BML	BML	BL	BL	вм	в
0100	4	DI	RD	-	_	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	TABP 36*	TABP 52*	BML	BML	BL	BL	вм	в
0101	5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	TABP 37*	TABP 53*	BML	BML	BL	BL	вм	в
0110	6	RC	_	SEAM	_	RTI	-	A 6	LA 6	TABP 6	TABP 22	TABP 38*	TABP 54*	BML	BML	BL	BL	вм	в
0111	7	SC	DEY	-	_	_	-	A 7	LA 7	TABP 7	TABP 23	TABP 39*	TABP 55*	BML	BML	BL	BL	вм	в
1000	8	POF2	AND	-	SNZ0	LZ 0	-	A 8	LA 8	TABP 8	TABP 24	TABP 40*	TABP 56*	BML	BML	BL	BL	вм	в
1001	9	_	OR	TDA	_	LZ 1	-	A 9	LA 9	TABP 9	TABP 25	TABP 41*	TABP 57*	BML	BML	BL	BL	вм	в
1010	А	АМ	TEAB	ТАВЕ	SNZIO	LZ 2	-	A 10	LA 10	TABP 10	TABP 26	TABP 42*	TABP 58*	BML	BML	BL	BL	вм	в
1011	в	AMC	_	-	-	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	TABP 43*	TABP 59*	BML	BML	BL	BL	вм	в
1100	с	ΤΥΑ	СМА	-	-	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	TABP 44*	TABP 60*	BML	BML	BL	BL	вм	в
1101	D	_	RAR	-	-	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	TABP 45*	TABP 61*	BML	BML	BL	BL	ВМ	в
1110	E	ТВА	ТАВ	-	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	TABP 46*	TABP 62*	BML	BML	BL	BL	ВМ	в
1111	F	-	TAY	SZC	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	TABP 47*	TABP 63*	BML	BML	BL	BL	BM	в

INSTRUCTION CODE TABLE

The above table shows the relationship between machine language codes and machine language instructions. D_3 – D_0 show the low-order 4 bits of the machine language code, and D_9 – D_4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below. * cannot be used at M34551M4.

	The second word
BL	10 paaa aaaa
BML	10 paaa aaaa
BLA	10 рр00 рррр
BMLA	10 рр00 рррр
SEA	00 0111 nnnn
SZD	00 0010 1011

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

INSI	<u>RUC</u>	TION	1 COI	DE T	ABL	E (CC	DNTI	NUE	D)									
	D9–D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 1 111111
D3- D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	-	тwза	OP0A	T1AB	-	-	IAP0	TAB1	SNZT1	-	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	_	_	OP1A	_	-	_	IAP1	_	SNZT2	_	_	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	-	-	-	_	-	TAMR	IAP2	-	-	-	_	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	-	-	-	-	-	TAI1	-	-	-	-	_	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	_	_	_	-	-	_	-	-	-	-	_	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	_	_	_	_	-	_	-	-	-	_	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	_	TMRA	-	-	-	-	-	-	-	-	-	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	_	TI1A	-	-	-	TAPU0	-	-	-	-	-	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	_	-	-	-	-	-	-	-	-	STCR	TC1A	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	-	-	-	-	-	-	-	-	(SPCR	TC2A	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	A	TL1A	_	-	-	TAL1	-	-	ľ	-	-	_	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	в	TL2A	-	-	-	TAW1	-		-	-	-	-	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	с	-	_	_	-	TAW2	_	0	_	-	-	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	TLCA	_	TPU0A	-	TAW3	-	_	_	_	-	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	E	TW1A	_	-	-	_	-	-	_	_	-	_	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	_	-	9	_	_	_	_	_	_	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

INSTRUCTION CODE TABLE (CONTINUED)

The above table shows the relationship between machine language codes and machine language instructions. D_3 - D_0 show the low-order 4 bits of the machine language code, and D_9 - D_4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "-."

The codes for the second word of a two-word instruction are described below.

	Th	ie second	l word
BL	10	рааа	aaaa
BML	10	рааа	аааа
BLA	10	p	рррр
BMLA	10	p	рррр
SEA	0 0	0111	nnnn
SZD	0 0	0010	1011

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

Parameter					10	In	struc	ction	cod	e					ber of	r of s	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		adec otatic		Number words	Number of cycles	Function
	ТАВ	0	0	0	0	0	1	1	1	1	0	0	1	E	1	1	(A) ← (B)
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	(B) ← (A)
	ΤΑΥ	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \gets (Y)$
	ΤΥΑ	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
nsfer	ТЕАВ	0	0	0	0	0	1	1	0	1	0	0	1	A	1	1	$(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$
Register to register transfer	TABE	0	0	0	0	1	0	1	0	1	0	0	2	A	1	1	$(B) \leftarrow (E_7-E_4)$ $(A) \leftarrow (E_3-E_0)$
ter to re	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR_2-DR_0) \leftarrow (A_2-A_0)$
Regis	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$(A_2-A_0) \leftarrow (DR_2-DR_0)$ $(A_3) \leftarrow 0$
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	ТАХ	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \gets (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	$(A_2-A_0) \leftarrow (SP_2-SP_0)$ $(A_3) \leftarrow 0$
	LXY x, y	1	1	Х3	X 2	X1	X 0	уз	y 2	y 1	уo	3	x	у	1	1	$ \begin{array}{l} (X) \leftarrow x, x = 0 \text{ to } 15 \\ (Y) \leftarrow y, y = 0 \text{ to } 15 \end{array} $
RAM addresses	LZ z	0	0	0	1	0	0	1	0	Z 1	Z 0	0	4	8 +z	1	1	$(Z) \leftarrow z, z = 0 \text{ to } 3$
RAM	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	$(Y) \leftarrow (Y) + 1$
	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$

MACHINE INSTRUCTIONS

Г		
Skip condition	Carry flag CY	Detailed description
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A.
-	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of registers A and B to register E.
-	-	Transfers the contents of register E to registers A and B.
_	-	Transfers the contents of register A to register D.
-	-	Transfers the contents of register D to register A.
-	-	Transfers the contents of register Z to register A.
-	-	Transfers the contents of register X to register A.
-	-	Transfers the contents of stack pointer (SP) to register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y.
		When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	-	Loads the value z in the immediate field to register Z.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

Parameter	INE INST		<u> </u>					ction							oť	of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5					Do		adec		Number of words	Number of cvcles	Function
	ТАМ ј	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$\begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$
Ŀo	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array}$
RAM	XAMI j	1	0	1	1	1	0	j	j	j	j	2	E	j	1	1	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array}$
	TMA j	1	0	1	0	1	1	j	j	j	I	2	В	j	1	1	$\begin{array}{l} (M(DP)) \leftarrow (A) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$
uo	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	(A) ← n n = 0 to 15
Arithmetic operation	TABP p	0	0	1	0	p5	p 4	рз	p2	p1	ро	0	8 +p	p	1	3	$\begin{array}{l} (\mathrm{SP}) \leftarrow (\mathrm{SP}) + 1 \\ (\mathrm{SK}(\mathrm{SP})) \leftarrow (\mathrm{PC}) \\ (\mathrm{PCH}) \leftarrow p \\ (\mathrm{PCL}) \leftarrow (\mathrm{DR}_2 - \mathrm{DR}_0, \mathrm{A}_3 - \mathrm{A}_0) \\ (\mathrm{B}) \leftarrow (\mathrm{ROM}(\mathrm{PC}))_{7 \text{ to } 4} \\ (\mathrm{A}) \leftarrow (\mathrm{ROM}(\mathrm{PC}))_{3 \text{ to } 0} \\ (\mathrm{PC}) \leftarrow (\mathrm{SM}(\mathrm{SP})) \\ (\mathrm{SP}) \leftarrow (\mathrm{SP}) - 1 \\ (\mathrm{Note}) \end{array}$

MACHINE INSTRUCTIONS (CONTINUED)

Note: p is 0 to 31 for M34551M4 and p is 0 to 63 for M34551E8.

Skip condition	Carry flag CY	Detailed description
-	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
(Y) = 0	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.
_	_	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
Continuous description	-	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	-	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR ₂ DR ₁ DR ₀ A ₃ A ₂ A ₁ A ₀) ₂ specified by registers A and D in page p. When this instruction is executed, 1 stage of stack register is used.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

MACH	NE INST	RU	СТ	ON	IS (NT	INU	JE)							
Parameter						In	struc	ction	coc	le					er of ds er of	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	Do	Hexa no	adeo otati		Number of words	Number of cycles	Function
	AM	0	0	0	0	0	0	1	0	1	0	0	0	A	1	1	$(A) \leftarrow (A) + (M(DP))$
	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP))+ (CY)$ $(CY) \leftarrow Carry$
	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	(A) ← (A) + n n = 0 to 15
Arithmetic operation	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A)AND(M(DP))$
Arithmetic	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A)OR(M(DP))$
	SC	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	$(CY) \leftarrow 0$
	SZC	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	CMA	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(\overline{A}) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	\rightarrow CY \rightarrow $A_3A_2A_1A_0$
	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	$(Mj(DP)) \leftarrow 1$ j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	(Mj(DP)) ← 0 j = 0 to 3
Bit	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
5 -	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	0	1	0	0	1	0	1	0	2	5	2	2	(A) = n ? n = 0 to 15
ပိ ိ		0	0	0	1	1	1	n	n	n	n	0	7	n			

MACHINE INSTRUCTIONS (CONTINUED)

Skip condition	Carry flag CY	Detailed description
_	-	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	-	Adds the value n in the immediate field to register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation.
-	-	Performs the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	-	Performs the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	1	Sets carry flag CY to "1."
-	0	Clears carry flag CY to "0."
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
-	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates the contents of register A including the contents of carry flag CY to the right by 1 bit.
_	-	Sets the contents of bit j (bit specified by the value j in the immediate field) of M(DP) to "1."
_	-	Clears the contents of bit j (bit specified by the value j in the immediate field) of M(DP) to "0."
(Mj(DP)) = 0 j = 0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP).
(A) = n	-	Skips the next instruction when the contents of register A is equal to the value n in the immediate field.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

Parameter						In	struc	ction	coc	le					er of ds	er of es		
Type of nstructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hex nc	adec		Number (words	Number of cycles	Function	
	Ва	0	1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а	1	1	(PCL) ← a6–a0	
ration	BL p, a	0	0	1	1	1	p4	рз	p2	рı	p o	0	E +p	-	2	2	$(PCH) \leftarrow p$ $(PCL) \leftarrow a_{6}-a_{0}$ (Note)	
Branch operation		1	0	p5	a 6	a 5	a 4	a 3	a 2	aı	a 0	2	p +a					
В	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2	2	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0)$	
		1	0	p 5	p 4	0	0	рз	p2	рı	p 0	2	р	р			(Note)	
	BM a	0	1	0	a 6	a 5	a 4	аз	a 2	a 1	a 0	1	a	a		1	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a_6-a_0$	
peration	BML p, a	0	0	1	1	0	p 4	рз	p2	p1	po		С +р	р	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$	
Subroutine operation		1	0	p5	a 6	a 5	a4	a 3	a2	a 1	a 0	2	р +а	а			(PCL) ← a6−a0 (Note)	
Sut	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0	2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	
		1	0	р 5	p4	0	0	рз	p2	рı	po	2	р	р			(PCH) ← p (PCL) ← (DR2–DR0, A3–A0) (Note)	
tion	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1	
Re	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1	2	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	

Note: p is 0 to 31 for M34551M4 and p is 0 to 63 for M34551E8.

Skip condition	Carry flag CY	Detailed description
-	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
_	_	Branch out of a page : Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	_	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
_	_	Call the subroutine : Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	_	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.
-	_	Returns from subroutine to the routine called the subroutine.
Skip unconditionally	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction unconditionally.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

Parameter		INSTRUCTIONS (CONTINUED) Instruction code											s of				
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	Do		ade otati	cimal on	Number words	Number of cycles	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	(EXF0) = 1 ? After skipping the next instruction, $(EXF0) \leftarrow 0$
Interrupt operation	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	A	1	1	l12 = 1 : (INT) = "H" ?
Interrupt																	112 = 0 : (INT) = "L" ?
	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	$(A) \leftarrow (V1)$
	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	$(V1) \leftarrow (A)$
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	$(A) \leftarrow (I1)$
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	$(I1) \leftarrow (A)$
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	(T1F) = 1 ? After skipping the next instruction $(T1F) \leftarrow 0$
c	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	(T2F) = 1 ? After skipping the next instruction (T2F) $\leftarrow 0$
peratio	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	$(A) \leftarrow (W1)$
Timer operation	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Е	1	1	$(W1) \leftarrow (A)$
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	$(A) \leftarrow (W2)$
	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	$(W2) \leftarrow (A)$
	TAW3	1	0	0	1	0	0	1	1	0	1	2	4	D	1	1	(A1, A0) ← (W31, W30)
	TW3A	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	(W31, W30) ← (A1, A0)

MACHINE INSTRUCTIONS (CONTINUED)

Skip condition	Carry flag CY	Detailed description
-	-	Clears the interrupt enable flag INTE to "0," and disables the interrupt.
-	-	Sets the interrupt enable flag INTE to "1," and enables the interrupt.
(EXF0) = 1	-	Skips the next instruction when the contents of EXF0 flag is "1." After skipping, clears the EXF0 flag to "0."
(INT) = "H" However, I12 = 1	-	When bit 2 (I12) of register I1 is "1" : Skips the next instruction when the level of INT pin is "H."
(INT) = "L" However, I12 = 0	-	When bit 2 (I12) of register I1 is "0" : Skips the next instruction when the level of INT pin is "L."
_	-	Transfers the contents of interrupt control register V1 to register A.
-	-	Transfers the contents of register A to interrupt control register V1.
-	-	Transfers the contents of interrupt control register I1 to register A.
-	-	Transfers the contents of register A to interrupt control register I1.
(T1F) = 1	-	Skips the next instruction when the contents of T1F flag is "1." After skipping, clears T1F flag.
(T2F) =1	-	Skips the next instruction when the contents of T2F flag is "1." After skipping, clears T2F flag.
-	-	Transfers the contents of timer control register W1 to register A.
-	-	Transfers the contents of register A to timer control register W1.
-	-	Transfers the contents of timer control register W2 to register A.
-	-	Transfers the contents of register A to timer control register W2.
-	-	Transfers the contents of timer control register W3 to register A.
_	-	Transfers the contents of register A to timer control register W3.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

Parameter						In	stru	ction	coc	de					er of Is	r of	2 2
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	Do			cimal ion	Number of words	Number of	Function
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17−T14) (A) ← (T13−T10)
Timer operation	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	At timer 1 stop (W20=0), (R17-R14) \leftarrow (B) (T17-T14) \leftarrow (B) (R13-R10) \leftarrow (A) (T13-T10) \leftarrow (A) At timer 1 operating (W20=1), (R17-R14) \leftarrow (B) (R13-R10) \leftarrow (A)
	TLCA	1	0	0	0	0	0	1	1	0	1	2	0	D	1	1	$(TLC) \leftarrow (A)$ $(RLC) \leftarrow (A)$
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	$(A) \leftarrow (P0)$
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	$(P0) \leftarrow (A)$
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	$(A) \leftarrow (P1)$
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	$(P1) \leftarrow (A)$
put/Output operation	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	(A) ← (P2)
utput c	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
Input/O	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ (Y) = 0 to 9
	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$(D(Y)) \leftarrow 1$ (Y) = 0 to 9
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)
	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	$(A) \leftarrow (PU0)$

MACHINE INSTRUCTIONS (CONTINUED)

Skip condition	Carry flag CY	Detailed description
-	-	Transfers the contents of timer 1 to registers A and B.
-	-	When stopping (W2 ₀ =0), transfers the contents of registers A and B to timer 1 and timer 1 reload register. When operating (W2 ₀ =1), transfers the contents of registers A and B only to timer 1 reload register.
		ed
_	-	Transfers the contents of register A to timer LC and timer LC reload register.
-	-	Transfers the input of port P0 to register A.
-	-	Outputs the contents of register A to port P0.
-	-	Transfers the input of port P1 to register A.
-	-	Outputs the contents of register A to port P1.
_	-	Transfers the input of port P2 to register A.
_	-	Sets port D to "1."
-	-	Clears a bit of port D specified by register Y to "0."
_	_	Sets a bit of port D specified by register Y to "1."
-	-	Transfers the contents of register A to pull-up control register PU0.
-	-	Transfers the contents of pull-up control register PU0 to register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

MACH	INE INST	RU	СТІ	ION	IS (NT	INU	JE	D)								
Parameter						In	struc	ction	coc	de					er of ds er of			
Type of instructions	Mnemonic	D۹	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	1	ade otati	cimal on	Number of words	Number of cycles	Function	
	TL1A	1	0	0	0	0	0	1	0	1	0	2	0	A	1	1	(L1) ← (A)	
LCD control operation	TAL1	1	0	0	1	0	0	1	0	1	0	2	4	A	1	1	(A) ← (L1)	
	TL2A	1	0	0	0	0	0	1	0	1	1	2	0	В	1	1	(L2) ← (A)	
circuit	TC1A	1	0	1	0	1	0	1	0	0	0	2	A	8	1	1	(C1) ← (A)	
Carrier generating circuit operation	STCR	1	0	1	0	0	1	1	0	0	0	2	9	8	1	1	Carrier wave generating start	
er gene oper	SPCR	1	0	1	0	0	1	1	0	0	1	2	9	9	1	1	Carrier wave generating stop	
Carrie	TC2A	1	0	1	0	1	0	1	0	0	1	2	A	9	1	1	(C2₀) ← (A₀)	
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	$(PC) \leftarrow (PC) + 1$	
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	Transition to clock operating mode	
	POF2	0	0	0	0	0	0	1	0	0	0	0	0	8	1	1	Transition to RAM back-up mode	
Ę	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	Power down instruction (POF, POF2) valid	
Other operation	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?	
Oth	WRST	1	0	1	0	1	0	0	0	0	0	2	A	0	1	1	$(WDF) \leftarrow 0, (WEF) \leftarrow 1$	
	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$	
	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR) \leftarrow (A)$	
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	$(A) \leftarrow (V2)$	
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	Е	1	1	$(V2) \leftarrow (A)$	

MACHINE INSTRUCTIONS (CONTINUED)

Skip condition	Carry flag CY	Detailed description
_	-	Transfers the contents of register A to LCD control register L1.
-	-	Transfers the contents of register L1 to register A.
-	-	Transfers the contents of register A to LCD control register L2.
_	-	Transfers the contents of register A to carrier wave selection register C1.
-	-	Starts generating carrier wave.
-	-	Stops generating carrier wave.
-	-	Transfers the contents of register A to carrier wave output control register C2.
_	-	No operation
_	-	Puts the system in clock operating mode state by executing the POF instruction after executing the EPOF instruction.
_	_	f(XCIN) oscillation, LCD, timer LC and timer 2 are operated. Puts the system in RAM back-up mode state by executing the POF2 instruction after executing the EPOF instruction. Oscillation is stopped.
-	-	Validates the power down instruction (POF, POF2) which is executed after the EPOF instruction by executing the EPOF instruction.
(P) = 1	-	Skips the next instruction when P flag is "1." After skipping, P flag remains unchanged.
_	-	Operates the watchdog timer and initializes the watchdog timer flag (WDF).
-	-	Transfers the contents of clock control register MR to register A.
_	-	Transfers the contents of register A to clock control register MR.
_	-	Transfers the contents of general-purpose register V2 to register A.
_	-	Transfers the contents of register A to general-purpose register V2.

MITSUBISHI MICROCOMPUTERS

4551 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

SYMBOL

The symbols shown below are used in the following list of instruction function and machine instructions.

Symbol	Contents	Symbol	Contents
А	Register A (4 bits)	WDF	Watchdog timer flag
В	Register B (4 bits)	INTE	Interrupt enable flag
DR	Register D (3 bits)	EXF0	External 0 interrupt request flag
E	Register E (8 bits)	Р	Power down flag
V1	Interrupt control register V1 (4 bits)		
V2	General-purpose register V2 (4 bits)	D	Port D (8 bits)
11	Interrupt control register I1 (4 bits)	P0	Port P0 (4 bits)
W1	Timer control register W1 (4 bits)	P1	Port P1 (4 bits)
W2	Timer control register W2 (4 bits)	P2	Port P2 (4 bits)
W3	Timer control register W3 (2 bits)		
C1	Carrier wave selection register C1 (4 bits)	x	Hexadecimal variable
C2	Carrier wave output control register C2 (1 bit)	у	Hexadecimal variable
CR	Carrier wave generating control flag	z	Hexadecimal variable
L1	LCD control regiser L1	р	Hexadecimal variable
L2	LCD control register L2	n	Hexadecimal constant which represents the
PU0	Pull-up control register PU0 (4 bits)		immediate value
MR	Clock control register MR (4 bits)	i 🔏	Hexadecimal constant which represents the
х	Register X (4 bits)		immediate value
Y	Register Y (4 bits)	i	Hexadecimal constant which represents the
z	Register Z (2 bits)		immediate value
DP	Data pointer (10 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
	(It consists of registers X, Y, and Z)		(same for others)
PC	Program counter (14 bits)		
РСн	High-order 7 bits of program counter	\leftarrow	Direction of data movement
PC∟	Low-order 7 bits of program counter	\leftrightarrow	Data exchange between a register and memory
SK	Stack register (14 bits X 8)	?	Decision of state shown before "?"
SP	Stack pointer (3 bits)	()	Contents of registers and memories
СҮ	Carry flag	_	Negate, Flag unchanged after executing
R1	Timer 1 reload register		instruction
R2	Timer 2 reload register	M(DP)	RAM address pointed by the data pointer
RLC	Timer LC reload register	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
STCK	System clock	р, а	Label indicating address a6 a5 a4 a3 a2 a1 a0
INSTK	Instruction clock		in page p5 p4 p3 p2 p1 p0
T1	Timer 1	с	Hex. C + Hex. number x (also same for others)
T2	Timer 2	+	
TLC	Timer LC	x	
T1F	Timer 1 interrupt request flag		
T2F	Timer 2 interrupt request flag		

Note : The 4551 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

CONTROL REGISTERS

	Interrupt control register V1	at r	reset : 00002	at power down : 00002	R/W
V13	V13 Timer 2 interrupt enable bit		Interrupt disabled (SNZT2 instruction is valid)	
VIS		1	Interrupt enabled (SNZT2 instruction is invalid)	
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)		
VIZ		1	Interrupt enabled (SNZT1 instruction is invalid)		
V11	Not used	0	This hit has no fun	tion but road/write is anabled	
VII	Not used	1	This bit has no function, but read/write is enabled.		
V10			Interrupt disabled (SNZ0 instruction is valid)		
V 10	External 0 interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)		

	Timer control register W1	at		reset : 00002	at power down : 00002	R/W
14/4 -)	Stop (prescaler stat	te initialized)	
W13	Prescaler control bit	1 (Operating		
\A/4 -	Draceolor dividing ratio coloction bit	()	Instruction clock (IN	ISTCK) divided by 4	
W12	Prescaler dividing ratio selection bit		1	Instruction clock (INSTCK) divided by 8		
		W11	W10		Count source	
W11		0	0	Presenter subject (ODOLIK)		
	Timer 1 count source selection bits	0	1	Prescaler output (O		
W10		1	0	Carrier output (CAF	RRY)	
		1	1	Carrier output divide	ed by 2 (CARRY/2)	

	Timer control register W2	at re		reset : 10002	at power down : – – – 02	R/W
W23	Timer 2 count source selection bit	0		f(Xcin)	-	
VVZ3	Timer 2 count source selection bit			Prescaler output (O	RCLK)	
		W22	W21		Count source	
W22		0	0	Underflow occur ev	ery 2 ¹⁴ count	
	- Timer 2 count value selection bits	0	1	Underflow occur ev	ery 2 ¹³ count	
W21		1	0	Not available		
		1	1	Not available		
14/0)	Stop (timer 1 state	retained)	
W20	Timer 1 control bit		1 Operating			

	Timer control register W3	a	at reset : 002 at power down : state retained		R/W
W31	W31 Timer LC count source selection bit		Bit 3 of timer 2 is output (timer 2 count source divided by 16)		
0031		1	State clock (STCK)		
W30	Timer LC control bit	0	Stop (timer LC state	e retained)	
VV30		1	Operating		

Note: "R" represents read enabled, and "W" represents write enabled.

"-" represents state retained.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

CONTROL REGISTERS (CONTINUED)

	Interrupt control register I1	at	reset : 00002	at power down : state retained	R/W			
113	I13 Not used		This bit has no fund	This bit has no function, but read/write is enabled.				
115	Not used	1						
		0	Falling waveform ("	L" level of INT pin is recognized with t	he SNZI0			
14.	Interrupt valid waveform for INT pin		instruction)					
I12	selection bit (Note 2)	1	1 Rising waveform ("H" level of INT pin is recognized with the SNZIO					
			instruction)					
14.	Netwood	0	This hit has no fund	tion but read/write is enabled				
I11	Not used	1	This bit has no function, but read/write is enabled.					
110	110 Not used 0 1		This bit has no function, but read/write is enabled.					
110								

	Pull-up control register PU0	at	reset : 00002	at power down : state retained	R/W	
PU03	Port P13 pull-up transistor	0	Pull-up transistor O	FF, no key-on wakeup		
P003	control bit	1	Pull-up transistor O	N, key-on wakeup		
DUO	Port P12 pull-up transistor	0 Pull-up transistor C		DFF, no key-on wakeup		
PU02	control bit	1	Pull-up transistor O	DN, key-on wakeup		
PU01	Port P11 pull-up transistor	0	Pull-up transistor O	FF, no key-on wakeup		
P001	control bit	1	Pull-up transistor O	N, key-on wakeup		
DUIDa	Port P10 pull-up transistor	0	Pull-up transistor O	OFF, no key-on wakeup		
PU00	control bit	1 🚽	Pull-up transistor O	N, key-on wakeup		

	Clock control register MR	at	reset : 1	0002	at power down : state retained	R/W	
		0	MR ₀ =0	MR0=0 f(XIN)			
		0	MR ₀ =1	f(Xcin)			
MRз	System clock (STCK) selection bit		MR ₀ =0	f(XIN)/4			
		1	MR ₀ =1	MR0=1 f(Xcin)/4			
		0	f(Xcin) c	scillation st	op, ports D ₆ and D ₇ selected		
MR2	f(Хсія) oscillation circuit control bit	1	f(Xcin) oscillation enabled, ports D6 and D7 not selected				
		0	Oscillation enabled				
MR1	f(XIN) oscillation circuit control bit	1	Oscillation stop				
		0	f(XIN)				
MR ₀	Clock selection bit	1	f(Xcin)				

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: Depending on the input state of D₅/INT pin, the external interrupt request flag EXF0 may be set to "1" when the contents of I1₂ is changed. Accordingly, set a value to bit 2 of register I1 and execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

Carrier wave selection register C1		at	reset	: 01	112 at power of	lown : 01112	w
	C13	C12	C11	C10	Carrier wave frequency	Duty	1
	0	0	0	0	STCK/24	1/3	
	0	0	0	1	STCK/24	1/2	
	0	0	1	0	STCK/16	1/4	
	0	0	1	1	STCK/16	1/2	
	0	1	0	0	STCK/2	1/2	
	0	1	0	1	No carrier wave		
	0	1	1	0	Not available		
Carrier wave selection bits	0	1	1	1	"L" fixed		
	1	0	0	0	STCK/12	1/3	
	1	0	0	1	STCK/12	1/2	
	1	0	1	0	STCK/8	1/4	
	1	0	1	1	STCK/8	1/2	
	1	1	0	0	STCK	1/2	
	1	1	0	1	No carrier wave		
	1	1	1	0	Not available		
	1	1	1	1	"L" fixed		

Cai	rier wave output control register C2	at reset : 02		at power down : 02	W
C20	Carrier wave output auto-control bit		Auto-control output	by timer 1 is invalid	
020		1	Auto-control output	by timer 1 is valid	

Car	rier wave generating control flag CR	at reset : 02		at power down : 02	W
CR	Carrier wave generating control	0	Carrier wave gener	ating stop (SPCR instruction)	
	Carrier wave generating control	1	Carrier wave gener	ating start (STCR instruction)	

Note: "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

CONTR	OL REGISTERS (CONTINUED)						
	LCD control register L1		at reset : 00002		at power down : state retained		R/W
1 1 2	L13 Not used)	This bit has no fund	no function, but read/write is enabled		
L13			1 This bit has no fur		tion, but read/w	file is enabled	
L12	L12 LCD on/off bit		0 Off				
LIZ			1	On			
		L11	L10	Duty		Bias	
L11		0	0		Not avail	able	
	LCD duty and bias selection bits	0	1	1/2		1/2	
L10		1	0	1/3		1/3	
		1	1	1/4		1/3	

	LCD control register L2	at reset : 11112		at power down : state retained W
1.22	L23 P23/SEG19 pin function switch bit		SEG19	
LZ3			P23	6.5
1.20	L22 P22/SEG18 pin function switch bit		SEG18	
LZ2			P22	
L21	P21/SEG17 pin function switch bit	0	SEG17	>
LZ1	P21/3EG1/ pin function switch bit	1	P21	
L20	P20/SEG16 pin function switch bit	0	SEG16	
LZ0		1	P20	

General-purpose register V2	2	at reset : 00002	at power down : 00002	R/W
4-bit general-purpose register.				
The data transfer between register A and this register	r is	performed with the TV2A	and TAV2 instructions.	

Note: "R" represents read enabled, and "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 7.0	V
Vi	Input voltage P0, P1, P2, RESET, XIN, XCIN		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, D	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage CARR, Xout, Xcout		-0.3 to VDD+0.3	V
Vo	Output voltage SEG, COM		-0.3 to VDD+0.3	V
Pd	Power dissipation		300	mW
Topr	Operating temperature range		-20 to 70	°C
Tstg	Storage temperature range		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS

(Mask ROM version: Ta = -20 °C to 70 °C, VDD = 2.2 V to 5.5 V, unless otherwise noted)

(One Time PROM version:Ta = -20 °C to 70 °C, VDD = 2.5 V to 5.5 V, unless otherwise noted)

Symbol	Parameter		Conditions	Limits			Unit	
Symbol			Conditions	Min.	Тур.	Max.		
			$f(X_{IN}) \le 4.0 \text{ MHz}$, ceramic resonator,					
		Mask ROM version	STCK=f(XIN)/4	0.0		5.5		
		INIASK ROIN VEISION	$f(X_{IN}) \le 1.0 \text{ MHz}$, ceramic resonator,	2.2		5.5		
			STCK=f(XIN)					
	Cumply valtage		$f(X_{IN}) \le 4.0 \text{ MHz}$, ceramic resonator,				1	
Vdd		One Time PROM version	STCK=f(XIN)/4	25			V	
VDD	Supply vollage		$f(X_{IN}) \le 1.0 \text{ MHz}$, ceramic resonator,	2.5		5.5	V	
			STCK=f(XIN)					
		ŀ	$f(X_{IN}) \le 8.0 \text{ MHz}$, ceramic resonator,				1	
			STCK=f(XIN)/4	4 5		5.5		
			$f(X_{IN}) \le 2.0 \text{ MHz}$, ceramic resonator,	4.5				
			STCK=f(XIN)					
Vram	RAM back-up v	voltage	RAM back-up	2.0		5.5	V	
Vss	Supply voltage				0		V	
Viн	"H" level input	voltage P0, P1, P2		0.8Vdd		Vdd	V	
Viн	"H" level input voltage XIN			0.7Vdd		Vdd	V	
Viн	"H" level input voltage RESET			0.85Vdd		Vdd	V	
Viн	"H" level input voltage INT			0.8Vdd		Vdd	V	
Vil	"L" level input v	voltage P0, P1, P2		0		0.3Vdd	V	
Vil	"L" level input v	voltage XIN		0		0.3Vdd	V	
Vil	"L" level input v	voltage RESET		0		0.3Vdd	V	
Vil	"L" level input v	voltage INT		0		0.2Vdd	V	
lo∟(peak)	"L" level peak o	output current	VDD=5.0 V			10	mA	
	P0, P1, D0–D7,	CARR	VDD=3.0 V			4		
lo∟(avg)		ge output current	VDD=5.0 V			5	mA	
	P0, P1, D0–D7,	CARR (Note)	VDD=3.0 V			2		
Іон(peak)	"H" level peak output current		Vdd=5.0 V	-30			_ mA	
	CARR		VDD=3.0 V	-15],	
Іон(avg)	,		Vdd=5.0 V	-15			_ mA	
			VDD=3.0 V					
f(Xcın)	f(Xcin) clock fre	equency	Quarts-crystal oscillator	32		50	kHz	
Taau	Valid power su	upply rising time for	Mask ROM version VDD = 0 to 2.2 V			400		
TPON	power-on reset	circuit	One Time PROM version VDD = 0 to 2.5 V			100	μs	

Note: The average output current is the average current value at the 100 ms interval.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

ELECTRICAL CHARACTERISTICS

(Mask ROM version:Ta = -20 °C to 70 °C, V_{DD} = 2.2 V to 5.5 V, unless otherwise noted) (One Time PROM version:Ta = -20 °C to 70 °C, V_{DD} = 2.5 V to 5.5 V, unless otherwise noted)

0		Description	Tarta			Limits		
Symbol		Parameter	Test conditions		Min.	Тур.	Max.	- Unit
Vol	P0, P1, D0–D7, CARR, RESET		IoL = 5 mA	Vdd = 5.0 V			0.9	v
VOL			IoL = 2 mA	Vdd = 3.0 V			0.9	
Voн "H" level output		Іон = –15 mA	Vdd = 5.0 V	2.4			v	
VOH		Voltage CARR	Іон = -7 mA	Vdd = 3.0 V	1.0			v
Ін		urrent P0, P1, P2, RESET	VI = VDD (Note 1)				1	μA
lil	"L" level input c		VI = 0 V (Note 1)		-1			μA
oz	Output current a	at off-state Do-D7	Vo = Vdd				1	μA
			$V_{DD} = 5.0 V$, $f(X_{CIN}) = 32 kHz$, $f(X_{IN}) = 8 MHz$ STCK = $f(X_{IN})/4$			2.5	5.0	
			VDD = 5.0 V f(Xcin) = 32 kHz	f(XIN) = 2 MHz		2.3	4.6	
		at active high-speed mode	STCK = f(XIN)	$f(X_{IN}) = 1 MHz$		1.4	2.8	mA
		while LCD is operating	STCK = f(XIN)/4	32 kHz, f(XIN) = 4 MHz		0.7	1.4	
			VDD = 3.0 V f(Xcin) = 32 kHz	f(Xin) = 1 MHz		0.6	1.2	
			STCK = f(XIN)	f(Xin) = 500 kHz		0.4	0.8	
ldd	Supply current (Note 2)	at active low-speed mode while LCD is operating	$V_{DD} = 5.0 V$ f(XIN) = stop	STCK = f(Xcin)/4		60	140	μA
	at active low-speed mode		f(Xcin) = 32 kHz	STCK = f(Xcin)		75	180	
			VDD = 3.0 V f(XIN) = stop	STCK = f(Xcin)/4		25	60	
			f(Xcin) = 32 kHz	STCK = f(Xcin)		30	80	
			f(Xin) = stop f(Xcin) = 32 kHz	Vdd = 5.0 V		27.5	60	
		Ta=25 °C	Vdd = 3.0 V		10	17.5	μA	
		While ECD is operating	f(XIN) = stop	VDD = 5.0 V			65	
	at RAM back-up mode		f(Xcin) = 32 kHz	VDD = 3.0 V			20	
		$f(X_{IN}) = stop, f(X_{CIN})$	•		0.1	1.0	μA	
			$f(X_{IN}) = \text{stop}, f(X_{CIN}) = V_{DD} = 5.0 \text{ V}, \text{ VI} = 0 \text{ V}$				10	
		P0, P1			20	50	125	kΩ
Rрн	Pull-up resistor		VDD = 3.0 V, VI = 0 V				250	
	value	RESET	$V_{DD} = 5.0 \text{ V}, \text{ VI} = 0 \text{ V}$		12	30	70	kΩ
			$V_{DD} = 3.0 \text{ V}, \text{ VI} = 0 \text{ V}$		25	60	130	
		INT	$V_{DD} = 5.0 V$			0.5		v
Vt+ – Vt-	Hysteresis		$V_{DD} = 3.0 V$			0.4		-
		RESET	$V_{DD} = 5.0 V$			1.5		v
			$V_{DD} = 3.0 V$			0.6	0.5	
Rсом	COM output imp	bedance	$V_{DD} = 5.0 V$			1.3	6.5	kΩ
			$V_{DD} = 3.0 V$			1.6	8	
Rseg	SEG output imp	edance	VDD = 5.0 V VDD = 3.0 V			1.8	9	kΩ
Rvlc	LCD power supply internal resistor value		Impedance between	VLC3 and Vss	300	2.2 600	11 1200	kΩ
	(Note 3)		Ta=25 °C					

Notes 1: In this case, the pull-up transistor of port P1 is turned off and the port P2 function is selected by software. 2: The current value includes the current dissipation of the LCD power supply internal resistor (RvLc).

3: VLC3=VDD.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

BASIC TIMING DIA	GRAM		
Parameter	Machine cycle	Mi	Mi+1
System clock	STCK		
Port D output	D0D7		
Ports P0, P1 output	P00–P03 P10–P13	X	X
Ports P0, P1 and P2 input	P00-P03 P10-P13 P20-P23		
Interrupt input	INT		
	60	ans	

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

BUILT-IN PROM VERSION

In addition to the mask ROM version, the 4551 Group has the programmable ROM version software compatible with mask ROM. The One Time PROM version has PROM which can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM version, but it has a PROM mode that enables writing to built-in PROM.

Table 20 shows the product of built-in PROM version. Figure 41 shows the pin configurations of built-in PROM version. The One Time PROM version has pin-compatibility with the mask ROM version.

Table 20 Product of built-in PROM version

Product	PROM size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34551E8-XXXFP				One Time PROM [shipped after writing]
	8192 words	92 words 280 words 48P6S-A (shi		(shipped after writing and test in factory)
M34551E8FP				One Time PROM [shipped in blank]

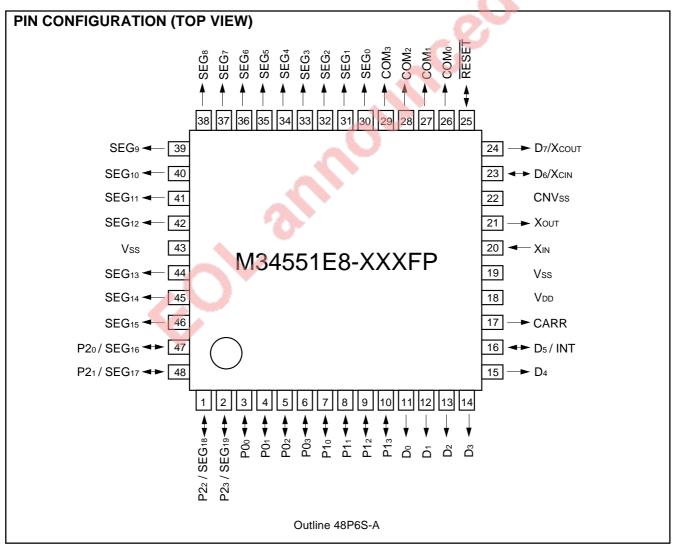


Fig. 41 Pin configuration of built-in PROM version

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

(1) PROM mode

The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM.

In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K. Programming adapter is listed in Table 21. Contact addresses at the end of this book for the appropriate PROM programmer.

 Writing and reading of built-in PROM Programming voltage is 12.5 V. Write the program in the PROM of the built-in PROM version as shown in Figure 42.

(2) Notes on handling

- ① A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ② For the One Time PROM version shipped in blank, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 43 before using is recommended.

(Products shipped in blank: PROM contents is not written in factory when shipped)

Table 21 Programming adapter

Microcomputer	Programming adapter			
M34551E8-XXXFP, M34551E8FP	PCA7414			

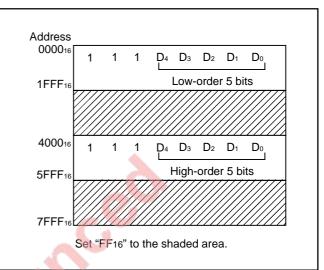


Fig. 42 PROM memory map

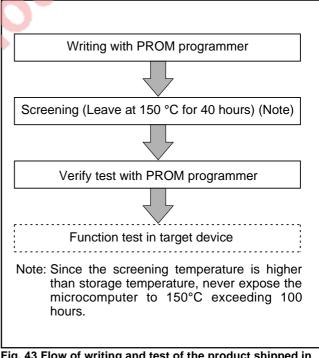


Fig. 43 Flow of writing and test of the product shipped in blank

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTER

RenesasTechnologyCorp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Keep safety first in your circuit designs!

Misubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
- Contained in these interests, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
- All micrimation contained in these materials, including product data, datafans and charts, represent micrimation on products at the time of publication or these materials, and are subject to charge by Miscubish Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Miscubish Electric Corporation or an authorized Miscubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. Mitsubishi Electric Corporation are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reprint or reprint or in part these materials. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the construct detection.
- Approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 1997 MITSUBISHI ELECTRIC CORP. KI-9711 Printed in Japan (ROD) [I] New publication, effective Nov. 1997 Specifications subject to change without notice.

REVISION DESCRIPTION LIST

4551 GROUP DATA SHEET

Rev. No.	Revision Description	Rev. date
1.0	First Edition	971130
	For sumounced	